Advertisement

Comprehensive methodology for commissioning modern 3D-image-based treatment planning systems for high dose rate gynaecological brachytherapy: A review

  • Abolfazl Kanani
    Affiliations
    Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
    Search for articles by this author
  • Amir M. Owrangi
    Affiliations
    Department of Radiation Oncology, UT Southwestern Medical Center, 2280 Inwood Rd, EC2.242, Dallas, TX 75235, USA
    Search for articles by this author
  • Mohammad Amin Mosleh-Shirazi
    Correspondence
    Corresponding author at: Physics Unit, Radio-oncology Department, Shiraz University of Medical Sciences, Shiraz 71936-13311, Iran.
    Affiliations
    Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

    Physics Unit, Department of Radio-oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-13311, Iran
    Search for articles by this author
Published:August 05, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.07.031

      Highlights

      • Modern 3D brachytherapy treatment planning systems have become highly complex.
      • Meticulous commissioning of such systems is essential but somewhat overlooked.
      • Up-to-date commissioning items for GYN HDR brachytherapy planning are presented.
      • The template covers 43 recommended items to consider (including their rationale).
      • It can also serve as a guide for allocation of the required time and resources.

      Abstract

      Purpose

      Correct commissioning of treatment planning systems (TPSs) is important for reducing treatment failure events. There is currently no comprehensive and robust methodology available for TPS commissioning in modern brachytherapy. This review aimed to develop a comprehensive template for commissioning modern 3D-image-based brachytherapy TPSs for high dose rate (HDR) gynaecological applications.

      Methods

      The literature relevant to TPS commissioning, including both external beam radiation therapy (EBRT) and brachytherapy, as well as guidelines by the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM), and the European Society for Radiotherapy and Oncology (ESTRO) were searched, studied and appraised. The applied relevant EBRT TPS commissioning tests were applied to brachytherapy. The developed template aimed to cover all dosimetric and non-dosimetric issues.

      Results

      The essential commissioning items could be categorized into six parts: geometry, dose calculation, plan evaluation tools, plan optimization, TPS output, and end-to-end verification. The final template consists of 43 items. This paper presents the purpose and role of each test, as well as tolerance limits, to facilitate the use of the template.

      Conclusion

      The information and recommendations available in a collection of publications over many years have been reviewed in order to develop a comprehensive template for commissioning complex modern 3D-image-based brachytherapy TPSs for HDR gynaecological applications. The up-to-date and concise information contained in the template can aid brachytherapy physicists during TPS commissioning as well as devising a regular quality assurance program and allocation of time and resources.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tanderup K.
        • Ménard C.
        • Polgar C.
        • Lindegaard J.C.
        • Kirisits C.
        • Pötter R.
        Advancements in brachytherapy.
        Adv Drug Deliv Rev. 2017; 109: 15-25
        • Holschneider C.H.
        • Petereit D.G.
        • Chu C.
        • Hsu I.-C.
        • Ioffe Y.J.
        • Klopp A.H.
        • et al.
        Brachytherapy: A critical component of primary radiation therapy for cervical cancer: for the Society of Gynecologic Oncology (SGO) and the American Brachytherapy Society (ABS).
        Brachytherapy. 2019;
        • Brown D.W.
        • Damato A.L.
        • Sutlief S.
        • Morcovescu S.
        • Park S.-J.
        • Reiff J.
        • et al.
        A consensus-based, process commissioning template for high-dose-rate gynecologic treatments.
        Brachytherapy. 2016; 15: 570-577
      1. Palmer A, Hayman O, Toussaint A, Sauer O. Proposal to improve commissioning of HDR brachytherapy with results from the first 2 SagiNova® units. ESTRO 35. Turin, Italy: Radiotherapy and Oncology; 2016. p. S939.

        • Fraass B.
        • Doppke K.
        • Hunt M.
        • Kutcher G.
        • Starkschall G.
        • Stern R.
        • et al.
        American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.
        Med Phys. 1998; 25: 1773-1829
        • Miranda M.O.
        • Pinho D.
        • Wardak Z.
        • Albuquerque K.
        • Pedrosa I.
        Magnetic resonance imaging for planning intracavitary brachytherapy for the treatment of locally advanced cervical cancer.
        Radiología (English Edition). 2016; 58: 16-25
      2. International Atomic Energy Agency, The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy, Human Health Reports No. 12, IAEA, Vienna (2015).

        • Kirisits C.
        • Pötter R.
        • Lang S.
        • Dimopoulos J.
        • Wachter-Gerstner N.
        • Georg D.
        Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer.
        Int J Radiat Oncol•Biolgy•Phys. 2005; 62: 901-911
        • Pötter R.
        • Haie-Meder C.
        • Van Limbergen E.
        • Barillot I.
        • De Brabandere M.
        • Dimopoulos J.
        • et al.
        Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.
        Radiother Oncol. 2006; 78: 67-77
        • Rivard M.J.
        • Beaulieu L.
        • Mourtada F.
        Enhancements to commissioning techniques and quality assurance of brachytherapy treatment planning systems that use model-based dose calculation algorithms.
        Med Phys. 2010; 37: 2645-2658
        • Dempsey C.
        Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning.
        Australas Phys Eng Sci Med. 2010; 33: 341-349
        • Van Dyk J.
        • Barnett R.
        • Cygler J.
        • Shragge P.
        Commissioning and quality assurance of treatment planning computers.
        Int J Radiat Oncol*Biol*Phys. 1993; 26: 261-273
        • Kutcher G.J.
        • Coia L.
        • Gillin M.
        • Hanson W.F.
        • Leibel S.
        • Morton R.J.
        • et al.
        Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40.
        Med Phys. 1994; 21: 581-618
        • Nath R.
        • Anderson L.L.
        • Meli J.A.
        • Olch A.J.
        • Stitt J.A.
        • Williamson J.F.
        Code of practice for brachytherapy physics: report of the AAPM radiation therapy committee task group No. 56.
        Med Phys. 1997; 24: 1557-1598https://doi.org/10.1118/1.597966
        • Kubo H.D.
        • Glasgow G.P.
        • Pethel T.D.
        • Thomadsen B.R.
        • Williamson J.F.
        High dose-rate brachytherapy treatment delivery: report of the AAPM radiation therapy committee task group No. 59.
        Med Phys. 1998; 25: 375-403https://doi.org/10.1118/1.598232
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • Hanson W.F.
        • Saiful Huq M.
        • Ibbott G.S.
        • Mitch M.G.
        • Nath R.
        • Williamson J.F.
        Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2004; 31: 633-674https://doi.org/10.1118/1.1646040
        • Andreo P.
        • Cramb J.
        • Fraass B.
        • Ionescu-Farca F.
        • Izewska J.
        • Levin V.
        • et al.
        Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer.
        Int Atomic Energy Agency Techn Rep Series. 2004;
        • Venselaar J.
        • Pérez-Calatayud J.
        A practical guide to quality control of brachytherapy equipment.
        ESTRO Brussels, 2004
        • Beaulieu L.
        • Carlsson Tedgren Å.
        • Carrier J.F.
        • Davis S.D.
        • Mourtada F.
        • Rivard M.J.
        • et al.
        Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation.
        Med Phys. 2012; 39: 6208-6236
        • Sina S.
        • Faghihi R.
        • Meigooni A.S.
        • Mehdizadeh S.
        • Mosleh-Shirazi M.A.
        • Zehtabian M.
        Impact of the vaginal applicator and dummy pellets on the dosimetry parameters of Cs-137 brachytherapy source.
        J Appl Clin Med Phys. 2011; 12: 183-193
        • Mosleh-Shirazi M.A.
        • Hadad K.
        • Faghihi R.
        • Baradaran-Ghahfarokhi M.
        • Naghshnezhad Z.
        • Meigooni A.
        EchoSeed model 6733 iodine-125 brachytherapy source: improved dosimetric characterization using the MCNP5 Monte Carlo code.
        Med Phys. 2012; 39: 4653-4659
        • Sina S.
        • Faghihi R.
        • Meigooni A.S.
        • Siavashpour Z.
        • Mosleh-Shirazi M.A.
        Developing a treatment planning software based on TG-43U1 formalism for Cs-137 LDR brachytherapy.
        Iran Red Crescent Med J. 2013; 15: 712
        • Palmer A.L.
        • Nisbet A.
        • Bradley D.
        Verification of high dose rate brachytherapy dose distributions with EBT3 Gafchromic film quality control techniques.
        Phys Med Biol. 2013; 58: 497
        • Austerlitz C.
        • Campos C.
        A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system.
        Med Phys. 2013; 40112103
        • Uniyal S.
        • Sharma S.
        • Naithani U.
        Dosimetric verification of a high dose rate brachytherapy treatment planning system in homogeneous and heterogeneous media.
        Physica Med. 2013; 29: 171-177
        • Mikell J.K.
        • Klopp A.H.
        • Price M.
        • Mourtada F.
        Commissioning of a grid-based Boltzmann solver for cervical cancer brachytherapy treatment planning with shielded colpostats.
        Brachytherapy. 2013; 12: 645-653
        • Moura E.S.
        • Micka J.A.
        • Hammer C.G.
        • Culberson W.S.
        • DeWerd L.A.
        • Rostelato M.E.
        • et al.
        Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms.
        Med Phys. 2015; 42: 1566-1574
        • Ma Y.
        • Lacroix F.
        • Lavallée M.-C.
        • Beaulieu L.
        Validation of the oncentra brachy advanced collapsed cone engine for a commercial 192 Ir source using heterogeneous geometries.
        Brachytherapy. 2015; 14: 939-952
        • Krause F.
        • Krause T.M.
        • Siebert F.-A.
        Commissioning of a modern commercial brachytherapy treatment planning system according to the Tg-186 report.
        Brachytherapy. 2015; 14: S72-S73
        • Zwierzchowski G.
        • Bielęda G.
        • Skowronek J.
        • Mazur M.
        Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA.
        J Contemp Brachytherapy. 2016; 8: 326
      3. de Oliveira CA, do Carmo Lopes M, Matos A. Commissioning of brachytherapy module of Oncentra MasterPlan treatment planning system. J Contemp Brachyther. 2009;1:224.

        • Kim Y.
        • Modrick J.M.
        • Pennington E.C.
        • Kim Y.
        Commissioning of a 3D image-based treatment planning system for high-dose-rate brachytherapy of cervical cancer.
        J Appl Clin Med Phys. 2016; 17: 405-426
        • Dimopoulos J.C.
        • Petrow P.
        • Tanderup K.
        • Petric P.
        • Berger D.
        • Kirisits C.
        • et al.
        Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy.
        Radiother Oncol. 2012; 103: 113-122
        • Soliman A.S.
        • Owrangi A.
        • Ravi A.
        • Song W.Y.
        Metal artefacts in MRI-guided brachytherapy of cervical cancer.
        J Contemp Brachyther. 2016; 8: 363
        • Hellebust T.P.
        • Kirisits C.
        • Berger D.
        • Pérez-Calatayud J.
        • De Brabandere M.
        • De Leeuw A.
        • et al.
        Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy.
        Radiother Oncol. 2010; 96: 153-160
        • Sloboda R.S.
        • Morrison H.
        • Cawston-Grant B.
        • Menon G.V.
        A brief look at model-based dose calculation principles, practicalities, and promise.
        J Contemp Brachyther. 2017; 9: 79
        • Viswanathan A.N.
        • Thomadsen B.
        • ABSCCR Committee
        American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles.
        Brachytherapy. 2012; 11: 33-46
        • Viswanathan A.N.
        • Beriwal S.
        • Jennifer F.
        • Demanes D.J.
        • Gaffney D.
        • Hansen J.
        • et al.
        American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy.
        Brachytherapy. 2012; 11: 47-52
        • Boas F.E.
        • Fleischmann D.
        CT artifacts: causes and reduction techniques.
        Imag Med. 2012; 4: 229-240
      4. International Atomic Energy Agency, Accuracy requirements and uncertainties in radiotherapy. Human Health Series 31. : Vienna: IAEA; 2016.

        • Brock K.K.
        • Mutic S.
        • McNutt T.R.
        • Li H.
        • Kessler M.L.
        Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132.
        Med Phys. 2017;
        • Nath R.
        • Anderson L.L.
        • Luxton G.
        • Weaver K.A.
        • Williamson J.F.
        • Meigooni A.S.
        Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43.
        Med Phys. 1995; 22: 209-234https://doi.org/10.1118/1.597458
        • Palmer A.
        • Mzenda B.
        Performance assessment of the BEBIG MultiSource® high dose rate brachytherapy treatment unit.
        Phys Med Biol. 2009; 54: 7417
        • Perez-Calatayud J.
        • Ballester F.
        • Das R.K.
        • DeWerd L.A.
        • Ibbott G.S.
        • Meigooni A.S.
        • et al.
        Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO.
        Med Phys. 2012; 39: 2904-2929
      5. Radiological Physics Center. Brachytherapy Source Registry Joint AAPM/IROC Houston Registry of Brachytherapy Sources Meeting the AAPM Dosimetric Prerequisites. Available at: http://rpc.mdanderson.org/RPC/BrachySeeds/Source_Registry.htm.

      6. https://www.uv.es/braphyqs.

        • Mosleh-Shirazi M.A.
        • Faghihi R.
        • Siavashpour Z.
        • Nedaie H.
        • Mehdizadeh S.
        • Sina S.
        Independent evaluation of an in-house brachytherapy treatment planning system using simulation, measurement and calculation methods.
        J Appl Clin Med Phys. 2012; 13: 103-112
        • Tedgren A.C.
        SP-0200: QA and commissioning of brachytherapy treatment planning systems.
        Radiother Oncol. 2015; 115: S101
        • Ballester F.
        • Carlsson Tedgren Å.
        • Granero D.
        • Haworth A.
        • Mourtada F.
        • Fonseca G.P.
        • et al.
        A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.
        Med Phys. 2015; 42: 3048-3062
      7. Gerbaulet A, Gerbaulet A. The GEC ESTRO handbook of brachytherapy; 2002.

        • Dempsey C.
        • Smith R.
        • Nyathi T.
        • Ceylan A.
        • Howard L.
        • Patel V.
        • et al.
        ACPSEM brachytherapy working group recommendations for quality assurance in brachytherapy.
        Australas Phys Eng Sci Med. 2013; 36: 387-396
        • Zourari K.
        • Pantelis E.
        • Moutsatsos A.
        • Petrokokkinos L.
        • Karaiskos P.
        • Sakelliou L.
        • et al.
        Dosimetric accuracy of a deterministic radiation transport based I192r brachytherapy treatment planning system. Part I: Single sources and bounded homogeneous geometries.
        Med Phys. 2010; 37: 649-661
        • Peppa V.
        • Pantelis E.
        • Pappas E.
        • Lahanas V.
        • Loukas C.
        • Papagiannis P.
        A user-oriented procedure for the commissioning and quality assurance testing of treatment planning system dosimetry in high-dose-rate brachytherapy.
        Brachytherapy. 2016; 15: 252-262
        • Cawston-Grant B.
        • Morrison H.
        • Menon G.
        • Sloboda R.S.
        Experimental verification of Advanced Collapsed-cone Engine for use with a multichannel vaginal cylinder applicator.
        J Appl Clin Med Phys. 2017; 18: 16-27
        • Cawston-Grant B.
        • Morrison H.
        • Sloboda R.S.
        • Menon G.
        Experimental assessment of the Advanced Collapsed-cone Engine for scalp brachytherapy treatments.
        Brachytherapy. 2018; 17: 489-499
        • Gossman M.S.
        • Hancock S.S.
        • Kudchadker R.J.
        • Lundahl P.R.
        • Cao M.
        • Melhus C.S.
        Brachytherapy dose-volume histogram commissioning with multiple planning systems.
        J Appl Clin Med Phys. 2014; 15: 110-120
        • Kirisits C.
        • Siebert F.-A.
        • Baltas D.
        • De Brabandere M.
        • Hellebust T.P.
        • Berger D.
        • et al.
        Accuracy of volume and DVH parameters determined with different brachytherapy treatment planning systems.
        Radiother Oncol. 2007; 84: 290-297
        • Bielęda G.
        • Zwierzchowski G.
        • Błasiak B.
        • Skowronek A.P.J.
        Quality assurance procedures during commissioning of a treatment planning system as a tool to establish new standards before migration.
        J Contemp Brachyther. 2010; 2: 76
        • Gossman M.S.
        Addendum to brachytherapy dose-volume histogram commissioning with multiple planning systems.
        J Appl Clin Med Phys. 2016; 17: 502-505
        • Smith R.L.
        • Panettieri V.
        • Lancaster C.
        • Mason N.
        • Franich R.D.
        • Millar J.L.
        The influence of the dwell time deviation constraint (DTDC) parameter on dosimetry with IPSA optimisation for HDR prostate brachytherapy.
        Australas Phys Eng Sci Med. 2015; 38: 55-61
        • Poder J.
        • Whitaker M.
        Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.
        J Contemp Brachyther. 2016; 8: 201
        • Mosleh-Shirazi M.A.
        • Shahcheraghi-Motlagh E.
        • Gholami M.H.
        • Shakibafard A.
        • Karbasi S.
        • Fardid R.
        Influence of dwell time homogeneity error weight parameter on treatment plan quality in inverse optimized high-dose-rate cervix brachytherapy using SagiPlan.
        J Contemp Brachyther. 2019; 11: 256
        • Williamson J.
        Quality assurance for high dose rate brachytherapy. High Dose Rate.
        Brachytherapy. 1994; : 147-212
        • Hrycushko B.
        • Yang M.
        • Albuquerque K.
        • Folkert M.
        Standard high dose rate brachytherapy plan template generation as part of a comprehensive brachytherapy program.
        Brachytherapy. 2016; 15: S138
        • van der Merwe D.
        • Van Dyk J.
        • Healy B.
        • Zubizarreta E.
        • Izewska J.
        • Mijnheer B.
        • et al.
        Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency.
        Acta Oncol. 2017; 56: 1-6
        • Thomadsen B.
        • Lin S.-W.
        • Laemmrich P.
        • Waller T.
        • Cheng A.
        • Caldwell B.
        • et al.
        Analysis of treatment delivery errors in brachytherapy using formal risk analysis techniques.
        Int J Radiat Oncol•Biol•Phys. 2003; 57: 1492-1508
        • Richardson S.
        A 2-year review of recent Nuclear Regulatory Commission events: what errors occur in the modern brachytherapy era?.
        Pract Radiat Oncol. 2012; 2: 157-163
        • Wilkinson D.A.
        • Kolar M.D.
        Failure modes and effects analysis applied to high-dose-rate brachytherapy treatment planning.
        Brachytherapy. 2013; 12: 382-386
        • Schenck J.F.
        The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds.
        Med Phys. 1996; 23: 815-850
        • Morrison H.
        • Menon G.
        • Larocque M.P.
        • van Veelen B.
        • Niatsetski Y.
        • Weis E.
        • et al.
        Advanced Collapsed cone Engine dose calculations in tissue media for COMS eye plaques loaded with I-125 seeds.
        Med Phys. 2018; 45: 3349-3360
        • Papagiannis P.
        • Pantelis E.
        • Karaiskos P.
        Current state of the art brachytherapy treatment planning dosimetry algorithms.
        Br J Radiol. 2014; 87: 20140163
        • Nikoofar A.
        • Hoseinpour Z.
        • Mahdavi S.R.
        • Hasanzadeh H.
        • Tavirani M.R.
        High-dose-rate 192Ir brachytherapy dose verification: a phantom study.
        Iran J Cancer Prevent. 2015; 8
        • McArdle N.
        • Fahy L.
        • Zuchora A.
        Verification of the dose distribution calculated by the treatment planning system in high dose rate brachytherapy.
        Phys Med. 2018; 52: 171
        • Baltas D.
        • Kolotas C.
        • Geramani K.
        • Mould R.F.
        • Ioannidis G.
        • Kekchidi M.
        • et al.
        A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy.
        Int J Radiat Oncol Biol Phys. 1998; 40: 515-524
        • Haie-Meder C.
        • Pötter R.
        • Van Limbergen E.
        • Briot E.
        • De Brabandere M.
        • Dimopoulos J.
        • et al.
        Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group☆(I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV.
        Radiother Oncol. 2005; 74: 235-245
        • Pötter R.
        • Georg P.
        • Dimopoulos J.C.
        • Grimm M.
        • Berger D.
        • Nesvacil N.
        • et al.
        Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer.
        Radiother Oncol. 2011; 100: 116-123
        • Lessard E.
        • Pouliot J.
        Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function.
        Med Phys. 2001; 28: 773-779
        • Karabis A.
        • Giannouli S.
        • Baltas D.
        40 HIPO: a hybrid inverse treatment planning optimization algorithm in HDR brachytherapy.
        Radiother Oncol. 2005; 76: S29