Advertisement
Original paper| Volume 77, P108-120, September 2020

Download started.

Ok

Beam characterisation studies of the 62 MeV proton therapy beamline at the Clatterbridge Cancer Centre

Published:August 18, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.08.002

      Highlights

      • Comprehensive study of the Clatterbridge ocular proton therapy cancer centre.
      • Facility beam dynamics and transverse beam optics modelled in MAD-X and BDSIM.
      • Quadrupole parameterisation and lattice optimisation for present-day conditions.
      • Geant4 simulations and film measurements of the treatment line beam profiles.
      • Optical lattice derived beam size and distributions for end-to-end characterisation.

      Abstract

      The Clatterbridge Cancer Centre (CCC) in the United Kingdom is the world’s first hospital proton beam therapy facility, providing treatment for ocular cancers since 1989. A 62 MeV beam of protons is produced by a Scanditronix cyclotron and transported through a passive delivery system. In addition to the long history of clinical use, the facility supports a wide programme of experimental work and as such, an accurate and reliable simulation model of the treatment beamline is highly valuable. However, as the facility has seen several changes to the accelerator and beamline over the years, a comprehensive study of the CCC beam dynamics is needed to firstly examine the beam optics. An extensive analysis was required to overcome facility related constraints to determine fundamental beamline parameters and define an optical lattice written with the Methodical Accelerator Design (MAD-X) and the particle tracking Beam Delivery Simulation (BDSIM) code. An optimised case is presented and simulated results of the optical functions, beam distribution, losses and the transverse rms beam sizes along the beamline are discussed. Corresponding optical and beam information was used in TOPAS to simulate transverse beam profiles and compared to EBT3 film measurements. We provide an overview of the magnetic components, beam transport, cyclotron, beam and treatment related parameters necessary for the development of a present day optical model of the facility. This work represents the first comprehensive study of the CCC facility to date, as a basis to determine input beam parameters to accurately simulate and completely characterise the beamline.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Owen H.
        • Lomax A.
        • Jolly S.
        Current and future accelerator technologies for charged particle therapy.
        Nucl Instrum Methods Phys Res Sec A Acceler Spectr Detect Assoc Equip. 2016; 809: 96-104
        • Kacperek A.
        Ocular proton therapy centers.
        in: Ion beam therapy: fundamentals, technology, clinical applications. 2012: 149-177
        • Kacperek A.
        Protontherapy of eye tumours in the UK: A review of treatment at Clatterbridge.
        Appl Radiat Isotopes. 2009; 67: 378-386
        • Damato B.
        • Kacperek A.
        • Errington D.
        • Heimann H.
        Proton beam radiotherapy of uveal melanoma.
        Saudi J Ophthalmol. 2013; 27: 151-157
        • Owen H.
        • MacKay R.
        • Peach K.
        • Smith S.
        Hadron accelerators for radiotherapy.
        Contemp Phys. 2014; 55: 55-74
        • Hrbacek J.
        • Mishra K.K.
        • Kacperek A.
        • Dendale R.
        • Nauraye C.
        • Auger M.
        • et al.
        Practice patterns analysis of ocular proton therapy centers: the international OPTIC survey.
        Int J Radiat Oncol Biol Phys. 2016; 95: 336-343
        • Mishra K.K.
        • Daftari I.K.
        Proton therapy for the management of uveal melanoma and other ocular tumors.
        Chin Clin Oncol. 2016; 5: 1-7
        • Paganetti H.
        Proton beam therapy. vol. 20115763. CRC Press, Boca Raton, FL, USA2012
      1. Wieszczycka W, Scharf WH. Protontherapy accelerators; 2001.

        • Schippers M.
        Beam delivery systems for particle therapy: current status and recent developments.
        Rev Acceler Sci Technol. 2009; 2: 179-200
        • Zeng X.H.
        • Zheng J.X.
        • Song Y.T.
        • Jiang F.
        • Li M.
        • Zhang J.S.
        • et al.
        Beam optics study for energy selection system of SC200 superconducting proton cyclotron.
        Nucl Sci Techn. 2018; 29: 1-8
        • Clarke J.A.
        • Dykes D.M.
        • Horrabin C.W.
        • Owen H.L.
        • Poole M.W.
        • Smith S.L.
        • Suller V.P.
        • Kacperek A.
        • Marsland B.
        An updated assessment of a medical cyclotron as an injector for an energy upgrade.
        in: Proceedings of EPAC1998 Stockholm. 1998: 630-632
        • Amaldi U.
        • Berra P.
        • Crandall K.
        • Toet D.
        • Weiss M.
        • Zennaro R.
        • et al.
        LIBO – A linac-booster for protontherapy: construction and tests of a prototype.
        Nucl Instrum Methods Phys Res Sec A Acceler Spectr Detect Assoc Equip. 2004; 521: 512-529
        • Amaldi U.
        Cancer therapy with particle accelerators.
        Nucl Phys A. 1999; 654: C375-C399
      2. Cybulski T, Karamyshev O, Welsch CP, Kacperek A, Marsland B, Taylor I, et al. Beam emittance measurements and beam transport optimisation at the Clatterbridge Cancer Centre. In Proceedings of IPAC2013, Shanghai, China; 2013. p. 810–2.

      3. Cybulski T. A non-invasive beam current monitor for a medical accelerator. Ph.D. thesis, University of Liverpool; 2017.

        • Bonnett D.E.
        • Kacperek A.
        • Sheen M.A.
        • Goodall R.
        • Saxton T.E.
        The 62 MeV proton beam for the treatment of ocular melanoma at Clatterbridge.
        British J Radiol. 1993; 66: 907-914
      4. UCL. Clatterbrige Proton Treatment Centre Image Maps. URL:http://www.hep.ucl.ac.uk/pbt/wikiData/clatterbridge/ImageMaps/index.html [accessed: 01/06/2019].

        • Bonnett D.E.
        • Kacperek A.
        • Sheen M.A.
        Characteristics of a 62 MeV proton therapy beam.
        in: Proc. EPAC1990. 1990: 1787
      5. Wittenburg K. Halo and bunch purity monitoring. CERN Accelerator School, Report No. CERN-2009-005; 2009. p. 557.

      6. CERN. MAD - Methodical Accelerator Design. URL:http://madx.web.cern.ch/madx/ [accessed: 01/01/2017].

        • Nevay L.
        • Snuverink J.
        • Abramov A.
        • Deacon L.
        • Garcia-Morales H.
        • Gibson S.
        • et al.
        BDSIM: an accelerator tracking code with particle-matter interactions.
        Comput Phys Commun. 2020; 107200
        • Agostinelli S.
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Araujo H.
        • Arce P.
        • et al.
        GEANT4 – A simulation toolkit.
        Nucl Instrum Methods Phys Res Sec A Acceler Spectr Detect Assoc Equip. 2003; 506: 250-303
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Araujo H.
        • Dubois P.A.
        • Asai M.
        • et al.
        Geant4 developments and applications.
        IEEE Trans Nucl Sci. 2006; 53: 270-278
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Arce P.
        • Asai M.
        • Aso T.
        • et al.
        Recent developments in GEANT4.
        Nucl Instrum Methods Phys Res Sec A Acceler Spectr Detect Assoc Equip. 2016; 835: 186-225
      7. Ashland inc. gafchromic radiology, EBT3 film. URL:http://www.gafchromic.com/ [accessed: 01/01/18].

        • Giordanengo S.
        • Palmans H.
        Dose detectors, sensors, and their applications.
        Med Phys. 2018; 45: e1051-e1072
      8. UCL. Clatterbridge Simulation Model. URL:http://www.hep.ucl.ac.uk/pbt/wiki/Clatterbridge [accessed: 01/07/2017].

        • Perl J.
        • Shin J.
        • Schümann J.
        • Faddegon B.
        • Paganetti H.
        TOPAS: an innovative proton Monte Carlo platform for research and clinical applications.
        Med Phys. 2012; 39: 6818-6837
        • Chaudhary P.
        • Marshall T.I.
        • Currell F.J.
        • Kacperek A.
        • Schettino G.
        • Prise K.M.
        Variations in the processing of DNA double-strand breaks along 60-MeV therapeutic proton beams.
        Int J Radiat Oncol Biol Phys. 2016; 95: 86-94
      9. Yap JSL, Resta-Lopez J, Schnuerer R, Welsch CP, Bal NJS, Fransen M, et al. Beam characterisation using MEDIPIX3 and EBT3 film at the Clatterbridge proton therapy beamline. In Proceedings of IPAC2019; 2019. p. 8–11.

        • Fuss M.
        • Sturtewagen E.
        • De Wagter C.
        • Georg D.
        Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance.
        Phys Med Biol. 2007; 52: 4211-4225
        • Sorriaux J.
        • Kacperek A.
        • Rossomme S.
        • Lee J.A.
        • Bertrand D.
        • Vynckier S.
        • et al.
        Evaluation of Gafchromic EBT3 films characteristics in therapy photon, electron and proton beams.
        Phys Med. 2013; 29: 599-606
      10. Dölling R. Profile, current, and halo monitors of the PROSCAN beam lines. In: Beam Instrumentation Workshop, vol. 732, AIP Conference Proceedings, Knoxville; 2004. p. 244–52.

        • Dölling R.
        • Lin S.
        • Duperrex P.-A.
        • Gamma G.
        • Keil B.
        Beam diagnostics for the proton therapy facility proscan.
        in: Proceedings of Accelerator Applications 2007. 2007: 152-159
        • Forck P.
        Lecture notes on beam instrumentation and diagnostics.
        Joint University Accelerator School, 2011
        • Park S.H.
        • Lee S.H.
        • Kim Y.S.
        Emittance measurement for beamline extension at the PET cyclotron.
        Sci Technol Nucl Install. 2016; 2016: 1-4
      11. McDonald KT, Russell DP. Methods of emittance measurement. In: 3rd Joint US-CERN School on Particle Accelerators: Frontiers of Particle Beams, Observation, Diagnosis and Correction, vol. 343, Capri; 1988.

        • Nesteruk K.
        • Auger M.
        • Braccini S.
        • Carzaniga T.
        • Ereditato A.
        • Scampoli P.
        A system for online beam emittance measurements and proton beam characterization.
        J Instrum. 2018; 13