Advertisement
Original paper| Volume 77, P100-107, September 2020

Download started.

Ok

Development of a dynamic deformable thorax phantom for the quality management of deformable image registration

Published:August 18, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.08.007

      Highlights

      • We developed a dynamic deformable thorax phantom for DIR commissioning and QA.
      • Our phantom can create various deformation patterns with various marker patterns.
      • DIR results with different marker settings and DIR parameters were obtained using this phantom.

      Abstract

      The purpose of this study was to develop a novel dynamic deformable thorax phantom for deformable image registration (DIR) quality assurance (QA) and to verify as a tool for commissioning and DIR QA.
      The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges. To evaluate the physical characteristics of the phantom, we evaluated its image quality and deformation. DIR accuracies were evaluated using the three types of commercially DIR software (MIM, RayStation, and Velocity AI) to test the feasibility of this phantom. We used different DIR parameters to test the impact of parameters on DIR accuracy in various phantom settings. To evaluate DIR accuracy, a target registration error (TRE) was calculated using the anatomical landmark points.
      The three locations (i.e., distal, middle, and proximal positions) had different displacement amounts. This result indicated that the inner phantom was not moved but deformed. In cases with different phantom settings and marker settings, the ranges of the average TRE were 0.63–15.60 mm (MIM). In cases with different DIR parameters settings, the ranges of the average TRE were as follows: 0.73–7.10 mm (MIM), 8.25–8.66 mm (RayStation), and 8.26–8.43 mm (Velocity). These results suggest that our phantom could evaluate the detailed DIR behaviors with TRE. Therefore, this is indicative of the potential usefulness of our phantom in DIR commissioning and QA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ma Y.
        • Liu X.
        • Dai Z.
        • He P.
        • Yan Y.
        • Shen G.
        • et al.
        Evaluation of mesh- and binary-based contour propagation methods in 4D thoracic radiotherapy treatments using patient 4D CT images.
        Phys Med. 2017; 36: 46-53
        • Zhong H.
        • Siddiqui S.M.
        • Movsas B.
        • Chetty I.J.
        Evaluation of adaptive treatment planning for patients with non-small cell lung cancer.
        Phys Med Biol. 2017; 62: 4346-4360
        • Samavati N.
        • Velec M.
        • Brock K.K.
        Effect of deformable registration uncertainty on lung SBRT dose accumulation.
        Med Phys. 2016; 43: 233
        • Keall P.
        4-dimensional computed tomography imaging and treatment planning.
        Sem Radiat Oncol. 2004; 14: 81-90
        • Kanai T.
        • Kadoya N.
        • Ito K.
        • Kishi K.
        • Dobashi S.
        • Yamamoto T.
        • et al.
        Evaluation of four-dimensional computed tomography (4D-CT)-based pulmonary ventilation: The high correlation between 4D-CT ventilation and (81 m)Kr-planar images was found.
        Radiother Oncol. 2016; 119: 444-448
        • Yamamoto T.
        • Kabus S.
        • Bal M.
        • Keall P.
        • Benedict S.
        • Daly M.
        The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer.
        Radiother Oncol. 2016; 118: 227-231
        • Brock K.K.
        Results of a multi-institution deformable registration accuracy study (MIDRAS).
        Int J Radiat Oncol Biol Phys. 2010; 76: 583-596
        • Kashani R.
        • Hub M.
        • Kessler M.L.
        • Balter J.M.
        Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms.
        Med Phys. 2007; 34: 2785
        • Kadoya N.
        • Nakajima Y.
        • Saito M.
        • Miyabe Y.
        • Kurooka M.
        • Kito S.
        • et al.
        Multi-institutional validation study of commercially available deformable image registration software for thoracic images.
        Int J Radiat Oncol Biol Phys. 2016;
        • Brock K.K.
        • Mutic S.
        • McNutt T.R.
        • Li H.
        • Kessler M.L.
        Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group.
        Med Phys. 2017; No. 132
        • Qin A.
        • Ionascu D.
        • Liang J.
        • Han X.
        • O'Connell N.
        • Yan D.
        The evaluation of a hybrid biomechanical deformable registration method on a multistage physical phantom with reproducible deformation.
        Radiat Oncol (London, England). 2018; 13: 240
        • Liao Y.
        • Wang L.
        • Xu X.
        • Chen H.
        • Chen J.
        • Zhang G.
        • et al.
        An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy.
        Med Phys. 2017; 44: 2369-2378
        • Miyakawa S.
        • Tachibana H.
        • Moriya S.
        • Kurosawa T.
        • Nishio T.
        • Sato M.
        Design and development of a nonrigid phantom for the quantitative evaluation of DIR-based mapping of simulated pulmonary ventilation.
        Med Phys. 2018;
        • Kadoya N.
        • Miyasaka Y.
        • Nakajima Y.
        • Kuroda Y.
        • Ito K.
        • Chiba M.
        • et al.
        Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom.
        Med Phys. 2017;
        • Serban M.
        • Heath E.
        • Stroian G.
        • Collins D.L.
        • Seuntjens J.
        A deformable phantom for 4D radiotherapy verification: Design and image registration evaluation.
        Med Phys. 2008; 35: 1094
        • Gholampourkashi S.
        • Cygler J.E.
        • Lavigne B.
        • Heath E.
        Development of a deformable phantom for experimental verification of 4D Monte Carlo simulations in a deforming anatomy.
        Phys Med. 2018; 51: 81-90
        • Miyakawa S.
        • Tachibana H.
        • Moriya S.
        • Kurosawa T.
        • Nishio T.
        Evaluation of deformation parameters for deformable image registration-based ventilation imaging using an air-ventilating non-rigid phantom.
        Phys Med. 2018; 50: 20-25
        • Chang J.
        • Suh T.S.
        • Lee D.S.
        Development of a deformable lung phantom for the evaluation of deformable registration.
        J Appl Clin Med Phys/Am College Med Phys. 2010; 11: 3081
        • McGurk R.
        • Seco J.
        • Riboldi M.
        • Wolfgang J.
        • Segars P.
        • Paganetti H.
        Extension of the NCAT phantom for the investigation of intra-fraction respiratory motion in IMRT using 4D Monte Carlo.
        Phys Med Biol. 2010; 55: 1475-1490
        • Hardcastle N.
        • van Elmpt W.
        • De Ruysscher D.
        • Bzdusek K.
        • Tome W.A.
        Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy.
        Radiat Oncol (London, England). 2013; 8: 243
        • La Macchia M.
        • Fellin F.
        • Amichetti M.
        • Cianchetti M.
        • Gianolini S.
        • Paola V.
        • et al.
        Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.
        Radiat Oncol (London, England). 2012; 7: 160
        • Kirby N.
        • Chuang C.
        • Ueda U.
        • Pouliot J.
        The need for application-based adaptation of deformable image registration.
        Med Phys. 2013; 40011702
        • Weistrand O.
        • Svensson S.
        The ANACONDA algorithm for deformable image registration in radiotherapy.
        Med Phys. 2015; 42: 40-53
        • Kadoya N.
        • Fujita Y.
        • Katsuta Y.
        • Dobashi S.
        • Takeda K.
        • Kishi K.
        • et al.
        Evaluation of various deformable image registration algorithms for thoracic images.
        J Radiat Res. 2014; 55: 175-182
        • Castillo R.
        • Castillo E.
        • Guerra R.
        • Johnson V.E.
        • McPhail T.
        • Garg A.K.
        • et al.
        A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
        Phys Med Biol. 2009; 54: 1849-1870
        • Broggi S.
        • Scalco E.
        • Belli M.L.
        • Logghe G.
        • Verellen D.
        • Moriconi S.
        • et al.
        A comparative evaluation of 3 different free-form deformable image registration and contour propagation methods for head and neck MRI: the case of parotid changes during radiotherapy.
        Technol Cancer Res Treat. 2017; 16: 373-381
        • Motegi K.
        • Tachibana H.
        • Motegi A.
        • Hotta K.
        • Baba H.
        • Akimoto T.
        Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy.
        J Appl Clin Med Phys/Am College Med Phys. 2019; 20: 229-236
        • Obeidat M.
        • Narayanasamy G.
        • Cline K.
        • Stathakis S.
        • Pouliot J.
        • Kim H.
        • et al.
        Comparison of different QA methods for deformable image registration to the known errors for prostate and head-and-neck virtual phantoms.
        Biomed Phys Eng Express. 2016; 2067002