Advertisement
Original paper| Volume 77, P127-137, September 2020

Download started.

Ok

BriXS, a new X-ray inverse Compton source for medical applications

Published:August 20, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.08.013

      Highlights

      • Dual-energy and K-edge subtraction imaging.
      • Rotational radiotherapy of breast cancer.
      • Phase-contrast imaging with coherence areas of about 10  μ m.

      Abstract

      MariX is a research infrastructure conceived for multi-disciplinary studies, based on a cutting-edge system of combined electron accelerators at the forefront of the world-wide scenario of X-ray sources. The generation of X-rays over a large photon energy range will be enabled by two unique X-ray sources: a Free Electron Laser and an inverse Compton source, called BriXS (Bright compact X-ray Source). The X-ray beam provided by BriXS is expected to have an average energy tunable in the range 20–180 keV and intensities between 1011 and 1013 photon/s within a relative bandwidth Δ E / E = 1 –10 % . These characteristics, together with a very small source size ( ~ 20  μ m) and a good transverse coherence, will enable a wide range of applications in the bio-medical field. An additional unique feature of BriXS will be the possibility to make a quick switch of the X-ray energy between two values for dual-energy and K-edge subtraction imaging. In this paper, the expected characteristics of BriXS will be presented, with a particular focus on the features of interest to its possible medical applications.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carroll F.E.
        Tunable monochromatic X rays: a new paradigm in medicine.
        Am J Roentgenol. 2002; 179: 583-590
        • Carroll F.E.
        • Mendenhall M.H.
        • Traeger R.H.
        • Brau C.
        • Waters J.W.
        Pulsed tunable monochromatic X-ray beams from a compact source: new opportunities.
        Am J Roentgenol. 2003; 181: 1197-1202
        • Achterhold K.
        • Bech M.
        • Schleede S.
        • Potdevin G.
        • Ruth R.
        • Loewen R.
        • et al.
        Monochromatic computed tomography with a compact laser-driven x-ray source.
        Sci Rep. 2013; 3: 1313
        • Freudenberger J.
        • Hell E.
        • Knüpfer W.
        Perspectives of medical x-ray imaging.
        Nucl Instrum Meth A. 2001; 466: 99-104
        • Vaccarezza C.
        • Alesini D.
        • Anania M.P.
        • Bacci A.
        • Biagioni A.
        • Bisesto F.
        • et al.
        The SPARC_LAB Thomson source.
        Nucl Instrum Meth A. 2016; 829: 237-242
      1. Priebe G, Laundy D, Phillips P, Graham D, Jamison S, Vassilev S, et al. First results from the Daresbury Compton backscattering X-ray source (COBALD). In: hard x-ray, gamma-ray, and neutron detector physics xii, vol. 7805. International Society for Optics and Photonics; 2010, p. 780513.

        • Tang C.
        • Huang W.
        • Li R.
        • Du Y.
        • Yan L.
        • Shi J.
        • et al.
        Tsinghua Thomson scattering X-ray source.
        Nucl Instrum Meth A. 2009; 608: S70-S74
        • Eggl E.
        • Dierolf M.
        • Achterhold K.
        • Jud C.
        • Günther B.
        • Braig E.
        • et al.
        The Munich compact light source: initial performance measures.
        J Synchrotron Radiat. 2016; 23: 1137-1142
      2. Faillace L, Agostino R, Bacci A, Barberi R, Bosotti, A., Broggi, F., et al. Status of compact inverse compton sources in italy: BriXS and STAR. In: Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII; vol. 11110. International Society for Optics and Photonics; 2019, p. 1111005.

        • Bacci A.
        • Puppin E.
        • Agostino R.
        • Alesini D.
        • Gatti G.
        • Petrillo V.
        • et al.
        The STAR project.
        in: 5th international particle accelerator conference (IPAC 2014). 2014
      3. Variola A. The ThomX Project. In: 2nd international particle accelerator conference (IPAC’11), vol. WEOAA01. Joint Accelerator Conferences Website; 2011, p. 1903–1905.

      4. Serafini L, Bacci A, Broggi F, Bosotti A, Coelli S, Curatolo C, et al. The MariX source (multidisciplinary advanced research infrastructure with x-rays). In: Proc. 9th int. particle accelerator conf. (IPAC’18). JACOW Publishing, Geneva, Switzerland; 2018.

        • Serafini L.
        • Bacci A.
        • Bellandi A.
        • Bertucci M.
        • Bolognesi M.
        • Bosotti A.
        • et al.
        MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering.
        Nucl Instrum Meth A. 2019;
      5. Serafini L, et al. MariX conceptual design report. 2019b. URL: https://repodip.fisica.unimi.it/marix/MariXCDR.pdf.

        • Bacci A.
        • Conti M.R.
        • Bosotti A.
        • Cialdi S.
        • Di Mitri S.
        • Drebot I.
        • et al.
        Two-pass two-way acceleration in a superconducting continuous wave linac to drive low jitter x-ray free electron lasers.
        Phys Rev Accel Beams. 2019; 22 (111304)
        • Drebot I.
        • Bacci A.
        • Bosotti A.
        • Broggi F.
        • Canella F.
        • Cardarelli P.
        • et al.
        BriXS ultra high flux inverse compton source based on modified push-pull energy recovery linacs.
        Instruments. 2019; 3: 49
        • Sannibale F.
        • Filippetto D.
        • Johnson M.
        • Li D.
        • Luo T.
        • Mitchell C.
        • et al.
        Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology.
        Phys Rev Accel Beams. 2017; 20 (113402)
        • Petrillo V.
        • Bacci A.
        • Zinati R.B.A.
        • Chaikovska I.
        • Curatolo C.
        • Ferrario M.
        • et al.
        Photon flux and spectrum of γ -rays Compton sources.
        Nucl Instrum Meth A. 2012; 693: 109-116
        • Curatolo C.
        • Drebot I.
        • Petrillo V.
        • Serafini L.
        Analytical description of photon beam phase spaces in inverse Compton scattering sources.
        Phys Rev Accel Beams. 2017; 20 (080701)
      6. Floettmann K, et al. ASTRA: A space charge tracking algorithm; 2011.

        • Bacci A.
        • Petrillo V.
        • Rossetti Conti M.
        GIOTTO: A Genetic Code for Demanding Beam-dynamics Optimizations.
        in: 7th international particle accelerator conference. 2016: 3073-3076
      7. Borland M. Elegant: a flexible SDDS-compliant code for accelerator simulation. In: 6th international computational accelerator physics conference (ICAP 2000) Darmstadt, Germany; 2000.

        • Chen P.
        • Horton-Smith G.
        • Ohgaki T.
        • Weidemann A.
        • Yokoya K.
        CAIN: Conglomérat d’ABEL et d’Interactions Non-linéaires.
        Nucl Instrum Meth A. 1995; 355: 107-110
        • Sun C.
        • Wu Y.K.
        Theoretical and simulation studies of characteristics of a Compton light source.
        Phys Rev Accel Beams. 2011; 14 (044701)
        • Krafft G.
        • Johnson E.
        • Deitrick K.
        • Terzić B.
        • Kelmar R.
        • Hodges T.
        • et al.
        Laser pulsing in linear Compton scattering.
        Phys Rev Accel Beams. 2016; 19 (121302)
      8. Krafft, G.A., Priebe, G.. Compton sources of electromagnetic radiation. In: Reviews of accelerator science and technology: volume 3: accelerators as photon sources. World Scientific; 2010, p. 147–163.

        • Paternò G.
        • Cardarelli P.
        • Marziani M.
        • Bagli E.
        • Evangelisti F.
        • Andreotti M.
        • et al.
        A collimation system for ELI-NP Gamma Beam System–design and simulation of performance.
        Nucl Instrum Meth B. 2017; 402: 349-353
      9. Drebot I, Petrillo V, Serafini L. Two-colour X-gamma ray inverse Compton back-scattering source. EPL 2017;120(1):14002.

      10. Drebot I, et al. Multi colour x-gamma ray inverse Compton back-scattering source. In: Proc. 9th int. particle accelerator conf. (IPAC’18). JACOW Publishing, Geneva, Switzerland; 2018a.

      11. Nowotny R. XMuDat: Photon attenuation data on PC; 1998. URL: https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm.

        • Boone J.M.
        • Chavez A.E.
        Comparison of x-ray cross sections for diagnostic and therapeutic medical physics.
        Med Phys. 1996; 23: 1997-2005
      12. Drebot I, et al. Optimisation study of the Fabry-Pérot optical cavity for the MARIX/BRIXS Compton x-ray source. In: Proc. 9th int. particle accelerator conf. (IPAC’18). JACOW Publishing, Geneva, Switzerland; 2018b.

        • Wilkins S.
        • Gureyev T.E.
        • Gao D.
        • Pogany A.
        • Stevenson A.
        Phase-contrast imaging using polychromatic hard X-rays.
        Nature. 1996; 384: 335-338
        • Larsson D.H.
        • Vågberg W.
        • Yaroshenko A.
        • Yildirim A.Ö.
        • Hertz H.M.
        High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography.
        Sci Rep. 2016; 6: 39074
        • Gradl R.
        • Dierolf M.
        • Hehn L.
        • Günther B.
        • Yildirim A.Ö.
        • Gleich B.
        • et al.
        Propagation-based phase-contrast x-ray imaging at a compact light source.
        Sci Rep. 2017; 7: 4908
      13. Variola A, Haissinski J, Loulergue A, Zomer F, et al. THOMX technical design report; 2014. URL: http://hal.in2p3.fr/in2p3-00971281.

        • Phuoc K.T.
        • Corde S.
        • Thaury C.
        • Malka V.
        • Tafzi A.
        • Goddet J.P.
        • et al.
        All-optical compton gamma-ray source.
        Nat Photon. 2012; 6: 308
        • Margaritondo G.
        A primer in synchrotron radiation: everything you wanted to know about SEX (Synchrotron Emission of X-rays) but were afraid to ask.
        J Synchrotron Radiat. 1995; 2: 148-154
      14. Brahme A, et al. Dual-energy and spectral imaging; chap. 2. Elsevier; 2014, p. 155–156.

        • Åslund M.
        • Fredenberg E.
        • Telman M.
        • Danielsson M.
        Detectors for the future of x-ray imaging.
        Radiat Prot Dosim. 2010; 139: 327-333
        • Willemink M.J.
        • Persson M.
        • Pourmorteza A.
        • Pelc N.J.
        • Fleischmann D.
        Photon-counting CT: technical principles and clinical prospects.
        Radiology. 2018; 289: 293-312
        • McCollough C.H.
        • Leng S.
        • Yu L.
        • Fletcher J.G.
        Dual- and multi-energy ct: principles, technical approaches, and clinical applications.
        Radiology. 2015; 276: 637-653
        • Yokhana V.S.
        • Arhatari B.D.
        • Gureyev T.E.
        • Abbey B.
        Soft-tissue differentiation and bone densitometry via energy-discriminating x-ray microct.
        Opt Exp. 2017; 25: 29328-29341
        • Walton L.A.
        • Bradley R.S.
        • Withers P.J.
        • Newton V.L.
        • Watson R.E.
        • Austin C.
        • et al.
        Morphological characterisation of unstained and intact tissue micro-architecture by x-ray computed micro-and nano-tomography.
        Sci Rep. 2015; 5: 10074
        • Alvarez R.E.
        • Macovski A.
        Energy-selective reconstructions in x-ray computerised tomography.
        Phys Med Biol. 1976; 21: 733
        • Lehmann L.
        • Alvarez R.
        • Macovski A.
        • Brody W.
        • Pelc N.
        • Riederer S.J.
        • et al.
        Generalized image combinations in dual KVP digital radiography.
        Med Phys. 1981; 8: 659-667
        • Taibi A.
        Generalized subtraction methods in digital mammography.
        Eur J Radiol. 2009; 72: 447-453
        • Thomlinson W.
        • Elleaume H.
        • Porra L.
        • Suortti P.
        K-edge subtraction synchrotron X-ray imaging in bio-medical research.
        Phys Med. 2018; 49: 58-76
        • Yamada K.
        • Kuroda R.
        • Toyakawa H.
        • Ikeura-Sekiguchi H.
        • Yasumoto M.
        • Koike M.
        • et al.
        A trial for fine and low-dose imaging of biological specimens using quasi-monochromatic laser-Compton X-rays.
        Nucl Instrum Meth A. 2009; 608: S7-S10
        • Carroll F.
        Tunable, monochromatic x-rays: An enabling technology for molecular/cellular imaging and therapy.
        J Cell Biochem. 2003; 90: 502-508
        • Eggl E.
        • Mechlem K.
        • Braig E.
        • Kulpe S.
        • Dierolf M.
        • Günther B.
        • et al.
        Mono-energy coronary angiography with a compact synchrotron source.
        Sci Rep. 2017; 7: 42211
      15. Kuroda R. Inverse Compton Scattering Sources. In: Brahme A, editor. Comprehensive biomedical physics, Elsevier; 2014.

        • Kulpe S.
        • Dierolf M.
        • Braig E.
        • Günther B.
        • Achterhold K.
        • Gleich B.
        • et al.
        K-edge subtraction imaging for coronary angiography with a compact synchrotron X-ray source.
        PLoS One. 2018; 13 (e0208446)
        • Paternò G.
        • Cardarelli P.
        • Gambaccini M.
        • Serafini L.
        • Petrillo V.
        • Drebot I.
        • et al.
        Inverse compton radiation: a novel x-ray source for K-edge subtraction angiography?.
        Phys Med Biol. 2019; 64 (185002)
        • Prino F.
        • Ceballos C.
        • Cabal A.
        • Sarnelli A.
        • Gambaccini M.
        • Ramello L.
        Effect of x-ray energy dispersion in digital subtraction imaging at the iodine K-edge –A Monte Carlo study.
        Med Phys. 2008; 35: 13-24
        • Sarnelli A.
        • Elleaume H.
        • Taibi A.
        • Gambaccini M.
        • Bravin A.
        K-edge digital subtraction imaging with dichromatic x-ray sources: SNR and dose studies.
        Phys Med Biol. 2006; 51: 4311
        • Sarnelli A.
        • Taibi A.
        • Baldelli P.
        • Gambaccini M.
        • Bravin A.
        Quantitative analysis of the effect of energy separation in K-edge digital subtraction imaging.
        Phys Med Biol. 2007; 52: 3015
        • Bayat S.
        • Le Duc G.
        • Porra L.
        • Berruyer G.
        • Nemoz C.
        • Monfraix S.
        • et al.
        Quantitative functional lung imaging with synchrotron radiation using inhaled xenon as contrast agent.
        Phys Med Biol. 2001; 46: 3287
        • Bayat S.
        • Strengell S.
        • Porra L.
        • Janosi T.Z.
        • Petak F.
        • Suhonen H.
        • et al.
        Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging.
        Am J Respir Crit Care Med. 2009; 180: 296-303
        • Sardanelli F.
        • Fallenberg E.M.
        • Clauser P.
        • Trimboli R.M.
        • Camps-Herrero J.
        • Helbich T.H.
        • et al.
        Mammography: an update of the eusobi recommendations on information for women.
        Insights Imag. 2017; 8: 11-18
        • Heck L.
        • Dierolf M.
        • Jud C.
        • Eggl E.
        • Sellerer T.
        • Mechlem K.
        • et al.
        Contrast-enhanced spectral mammography with a compact synchrotron source.
        PloS One. 2019; 14
        • McDonald E.S.
        • Clark A.S.
        • Tchou J.
        • Zhang P.
        • Freedman G.M.
        Clinical diagnosis and management of breast cancer.
        J Nucl Med. 2016; 57: 9S-16S
        • Mast M.E.
        • Vredeveld E.J.
        • Credoe H.M.
        • van Egmond J.
        • Heijenbrok M.W.
        • Hug E.B.
        • et al.
        Whole breast proton irradiation for maximal reduction of heart dose in breast cancer patients.
        Breast Cancer Res Tr. 2014; 148: 33-39
        • Prionas N.D.
        • McKenney S.E.
        • Stern R.L.
        • Boone J.M.
        Kilovoltage rotational external beam radiotherapy on a breast computed tomography platform: a feasibility study.
        Int J Radiat Oncol Biol Phys. 2012; 84: 533-539
        • Di Lillo F.
        • Mettivier G.
        • Sarno A.
        • Castriconi R.
        • Russo P.
        Towards breast cancer rotational radiotherapy with synchrotron radiation.
        Phys Med. 2017; 41: 20-25
        • Di Lillo F.
        • Mettivier G.
        • Castriconi R.
        • Sarno A.
        • Stevenson A.W.
        • Hall C.J.
        • et al.
        Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.
        J Synchrotron Radiat. 2018; 25: 857-868
        • Hammerstein R.G.
        • Miller D.W.
        • White D.R.
        • Masterson E.M.
        • Woodard H.Q.
        • Laughlin J.S.
        Absorbed radiation dose in mammography.
        Radiology. 1979; 130: 485-491
        • Boone J.M.
        Glandular breast dose for monoenergetic and high-energy x-ray beams: Monte carlo assessment.
        Radiology. 1999; 213: 23-37
        • Lin Y.
        • Paganetti H.
        • McMahon S.J.
        • Schuemann J.
        Gold nanoparticle induced vasculature damage in radiotherapy: comparing protons, megavoltage photons, and kilovoltage photons.
        Med Phys. 2015; 42: 5890-5902
        • Renier M.
        • Brochard T.
        • Nemoz C.
        • Requardt H.
        • Bräuer E.
        • Esteve F.
        • et al.
        The radiotherapy clinical trials projects at the ESRF: technical aspects.
        Eur J Radiol. 2008; 68: S147-S150
        • Bräuer-Krisch E.
        • Adam J.F.
        • Alagoz E.
        • Bartzsch S.
        • Crosbie J.
        • DeWagter C.
        • et al.
        Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT).
        Phys Med. 2015; 31: 568-583
        • Deman P.
        • Vautrin M.
        • Edouard M.
        • Stupar V.
        • Bobyk L.
        • Farion R.
        • et al.
        Monochromatic minibeams radiotherapy: from healthy tissue-sparing effect studies toward first experimental glioma bearing rats therapy.
        Int J Radiat Oncol Biol Phys. 2012; 82: e693-e700
        • Crosbie J.C.
        • Rogers P.A.
        • Stevenson A.W.
        • Hall C.J.
        • Lye J.E.
        • Nordström T.
        • et al.
        Reference dosimetry at the australian synchrotron’s imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer.
        Med Phys. 2013; 40
        • Bravin A.
        • Olko P.
        • Schültke E.
        • Wilkens J.J.
        SYRA3 COST action–microbeam radiation therapy: roots and prospects.
        Phys Med. 2015; 31: 561-563
        • Grotzer M.
        • Schültke E.
        • Bräuer-Krisch E.
        • Laissue J.
        Microbeam radiation therapy: clinical perspectives.
        Phys Med. 2015; 31: 564-567
        • Poole C.M.
        • Day L.R.
        • Rogers P.A.
        • Crosbie J.C.
        Synchrotron microbeam radiotherapy in a commercially available treatment planning system.
        Biomed Phys Eng Express. 2017; 3 (025001)
      16. Durante M, Bräuer-Krisch E, Hill M. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br J Radiol 2018;91(1082):20170628. PMID: 29172684.

        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6 (245ra93–245ra93)
        • Jacquet M.
        • Suortti P.
        Radiation therapy at compact compton sources.
        Phys Med. 2015; 31: 596-600
        • Dombrowsky A.C.
        • Burger K.
        • Porth A.K.
        • Stein M.
        • Dierolf M.
        • Günther B.
        • et al.
        A proof of principle experiment for microbeam radiation therapy at the munich compact light source.
        Radiat Environ Biophys. 2019; : 1-10
        • Fitzgerald R.
        Phase-sensitive x-ray imaging.
        Phys Today. 2000; 53: 23-26
        • Endrizzi M.
        X-ray phase-contrast imaging.
        Nucl Instrum Meth A. 2018; 878: 88-98
        • Bravin A.
        • Coan P.
        • Suortti P.
        X-ray phase-contrast imaging: from pre-clinical applications towards clinics.
        Phys Med Biol. 2012; 58: R1
        • Castelli E.
        • Tonutti M.
        • Arfelli F.
        • Longo R.
        • Quaia E.
        • Rigon L.
        • et al.
        Mammography with synchrotron radiation: first clinical experience with phase-detection technique.
        Radiology. 2011; 259: 684-694
        • Sarno A.
        • Mettivier G.
        • Golosio B.
        • Oliva P.
        • Spandre G.
        • Di Lillo F.
        • et al.
        Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector.
        Phys Med. 2016; 32: 681-690
        • Delogu P.
        • Golosio B.
        • Fedon C.
        • Arfelli F.
        • Bellazzini R.
        • Brez A.
        • et al.
        Imaging study of a phase-sensitive breast-CT system in continuous acquisition mode.
        J Instrum. 2017; 12: C01016
        • Bliznakova K.
        • Russo P.
        • Kamarianakis Z.
        • Mettivier G.
        • Requardt H.
        • Bravin A.
        • et al.
        In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility.
        Phys Med Biol. 2016; 61: 6243
        • Castriconi R.
        • Mettivier G.
        • Russo P.
        Image quality and radiation dose in propagation based phase contrast mammography with a microfocus x-ray tube: A phantom study.
        in: International workshop on breast imaging. Springer, 2016: 618-624
        • Wu X.
        • Liu H.
        Clarification of aspects in in-line phase-sensitive x-ray imaging.
        Med Phys. 2007; 34: 737-743
        • Brombal L.
        • Donato S.
        • Dreossi D.
        • Arfelli F.
        • Bonazza D.
        • Contillo A.
        • et al.
        Phase-contrast breast CT: the effect of propagation distance.
        Phys Med Biol. 2018; 63: 2403
        • Diemoz P.
        • Endrizzi M.
        • Zapata C.
        • Pešić Z.
        • Rau C.
        • Bravin A.
        • et al.
        X-ray phase-contrast imaging with nanoradian angular resolution.
        Phys Rev Lett. 2013; 110 (138105)
        • Mittone A.
        • Bravin A.
        • Coan P.
        Radiation dose in breast CT imaging with monochromatic x-rays: simulation study of the influence of energy, composition and thickness.
        Phys Med Biol. 2014; 59: 2199
        • Chi Z.
        • Yan L.
        • Du Y.
        • Zhang Z.
        • Huang W.
        • Chen H.
        • et al.
        Recent progress of phase-contrast imaging at tsinghua thomson-scattering x-ray source.
        Nucl Instrum Meth B. 2017; 402: 364-369
        • Oliva P.
        • Carpinelli M.
        • Golosio B.
        • Delogu P.
        • Endrizzi M.
        • Park J.
        • et al.
        Quantitative evaluation of single-shot inline phase contrast imaging using an inverse Compton x-ray source.
        Appl Phys Lett. 2010; 97 (134104)
      17. Eggl E, Schleede S, Bech M, Achterhold K, Grandl S, Sztrókay, et al. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse compton x-ray source. EPL 2017b;116(6):68003.