Advertisement

Monte Carlo calculations of radiotherapy dose in “homogeneous” anatomy

Published:October 06, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.09.019

      Highlights

      • There are hundreds of papers on Monte Carlo verification of radiotherapy dose for heterogeneous anatomy (lung, head, neck).
      • By contrast, publications on Monte Carlo calculations of radiotherapy dose for “homogeneous” pelvic anatomy are rare.
      • This study investigated the potential value of Monte Carlo dose verifications of radiotherapy dose, for pelvic anatomy.
      • Results showed that planned treatment doses for pelvic anatomy can be unexpectedly complex, with variable accuracy.
      • Novel metrics identified key aspects of treatment plan complexity that can affect dose calculation accuracy.

      Abstract

      Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang L.
        • Yorke E.
        • Chui C.S.
        Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and lung treatments.
        Med Phys. 2002; 29: 2705-2717
        • Vanderstraeten B.
        • Reynaert N.
        • Paelinck L.
        Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
        Med Phys. 2006; 33: 3149-3158
        • Seco J.
        • Adams E.
        • Bidmead M.
        Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.
        Phys Med Biol. 2005; 50: 817-830
        • Crowe S.B.
        • Kairn T.
        • Trapp J.V.
        • Fielding A.L.
        Monte Carlo evaluation of collapsed-cone convolution calculations in head and neck radiotherapy treatment plans.
        IFMBE Proc. 2013; 39: 1803-1806https://doi.org/10.1007/978-3-642-29305-4_474
        • Yang J.
        • Li J.
        • Chen L.
        • Price R.
        • McNeeley S.
        • Qin L.
        • et al.
        Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer.
        Phys Med Biol. 2005; 50: 869-878
        • Qiu Y.
        • Moiseenko V.
        • Aquino-Parsons C.
        • Duzenli C.
        Equivalent doses for gynecological patients undergoing IMRT or RapidArc with kilovoltage cone beam CT.
        Radiother Oncol. 2012; 104: 257-262
        • Abuhaimed A.
        • Martin C.J.
        • Sankaralingam M.A.
        Monte Carlo study of organ and effective doses of cone beam computed tomography (CBCT) scans in radiotherapy.
        J Radiol Prot. 2017; 38: 61-80
        • Marchant T.E.
        • Joshi K.D.
        Comprehensive Monte Carlo study of patient doses from cone-beam CT imaging in radiotherapy.
        J Radiol Prot. 2016; 37: 13-30
        • Esposito A.
        • Sakellaris T.
        • Limede P.
        • Costa F.
        • Cunha L.T.
        • Dias A.G.
        • et al.
        Effects of shielding on pelvic and abdominal IORT dose distributions.
        Physica Medica. 2016; 32: 1397-1404
        • Chiavassa S.
        • Buge F.
        • Hervé C.
        • Delpon G.
        • Rigaud J.
        • Lisbona A.
        • Supiot S.
        Monte Carlo evaluation of the effect of inhomogeneities on dose calculation for low energy photons intra-operative radiation therapy in pelvic area.
        Physica Medica. 2015; 31: 956-962
        • Ahnesjö A.
        • Aspradakis M.M.
        Dose calculations for external photon beams in radiotherapy.
        Phys Med Biol. 1999; 44: R99-R155
        • Engelsman M.
        • Damen E.M.
        • Koken P.W.
        • van’t Veld A.A.
        • van Ingen K.M.
        • Mijnheer B.J.
        Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours.
        Radiother Oncol. 2001; 60: 299-309
        • Zhuang T.
        • Djemil T.
        • Qi P.
        • Magnelli A.
        • Stephans K.
        • Videtic G.
        • Xia P.
        Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2013; 14: 38-51
        • Ding G.X.
        • Duggan D.M.
        • Lu B.
        • Hallahan D.E.
        • Cmelak A.
        • Malcolm A.
        • et al.
        Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy.
        Med Phys. 2007; 34: 2985-2994
        • Dunn L.
        • Lehmann J.
        • Lye J.
        • Kenny J.
        • Kron T.
        • Alves A.
        • et al.
        National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.
        Physica Medica. 2015; 31: 435-441
        • Tsuruta Y.
        • Nakata M.
        • Nakamura M.
        • Matsuo Y.
        • Higashimura K.
        • Monzen H.
        • et al.
        Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer.
        Med Phys. 2014; 41081715
      1. Mißlbeck M, Kneschaurek P. Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol 2012;188(7):599-605.

        • Knöös T.
        • Wieslander E.
        • Cozzi L.
        • Brink C.
        • Fogliata A.
        • Albers D.
        • et al.
        Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations.
        Phys Med Biol. 2006; 51: 5785-5807
        • Ade N.
        • Oderinde O.M.
        • du Plessis F.C.P.
        Monte Carlo dose in a prosthesis phantom based on exact geometry vs streak artefact contaminated CT data as benchmarked against Gafchromic film measurements.
        Physica Medica. 2018; 54: 94-102
        • Keall P.J.
        • Siebers J.V.
        • Jeraj R.
        • Mohan R.
        Radiotherapy dose calculations in the presence of hip prostheses.
        Med Dosim. 2003; 28: 107-112
        • Byrnes K.
        • Ford A.
        • Bennie N.
        Verification of the Elekta Monaco TPS Monte Carlo in modelling radiation transmission through metals in a water equivalent phantom.
        Australas Phys Eng Sci Med. 2019; 42: 639-645
        • Crowe S.B.
        • Kairn T.
        • Trapp J.V.
        • Fielding A.L.
        Experimental evaluation of MCDTK, the Monte Carlo DICOM ToolKit.
        IFMBE Proc. 2013; 39: 1807-1810https://doi.org/10.1007/978-3-642-29305-4_475
        • Livingstone A.G.
        • Francis K.
        Clinical implementation of an automated Monte Carlo dose verification system.
        Australas Phys Eng Sci Med. 2018; 41: 282-283https://doi.org/10.1007/s13246-017-0614-7
        • Livingstone A
        • Crowe S
        • Sylvander S
        • Kairn T
        Clinical implementation of a Monte Carlo based independent TPS dose checking system.
        Phys Eng Sci Med. 2020; 43: 1113-1123https://doi.org/10.1007/s13246-020-00907-x
        • Binny D.
        • Kairn T.
        • Lancaster C.M.
        • Trapp J.V.
        • Crowe S.B.
        Photon Optimizer (PO) versus Progressive Resolution Optimizer (PRO): A conformality and complexity based comparison for Intensity Modulated Arc Therapy plans.
        Med Dosim. 2018; 43: 267-275
        • Van Esch A.
        • Tillikainen L.
        • Pyykkonen J.
        • Tenhunen M.
        • Helminen H.
        • Siljamäki S.
        • et al.
        Testing of the analytical anisotropic algorithm for photon dose calculation.
        Med Phys. 2006; 33: 4130-4148
        • Vassiliev O.N.
        • Wareing T.A.
        • McGhee J.
        • Failla G.
        • Salehpour M.R.
        • Mourtada F.
        Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.
        Phys Med Biol. 2010; 55: 581-598
        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • Cozzi L.
        Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media.
        Radiat Oncol. 2011; 6: 82
        • Rogers D.W.O.
        • Faddegon B.A.
        • Ding G.X.
        • Ma C.M.
        • We J.
        • Mackie T.R.
        BEAM: a Monte Carlo code to simulate radiotherapy treatment units.
        Med Phys. 1995; 22: 503-524
        • Rogers D.W.O.
        Fifty years of Monte Carlo simulations for medical physics.
        Phys Med Biol. 2006; 51: R287-R301
        • Bush K.
        • Townson R.
        • Zavgorodni S.
        Monte Carlo simulation of RapidArc radiotherapy delivery.
        Phys Med Biol. 2008; 53: N359-N370
        • Reynaert N.
        • Demol B.
        • Charoy M.
        • Bouchoucha S.
        • Crop F.
        • Wagner A.
        • et al.
        Clinical implementation of a Monte Carlo based treatment plan QA platform for validation of Cyberknife and Tomotherapy treatments.
        Physica Medica. 2016; 32: 1225-1237
        • Oborn B.M.
        • Williams M.
        • Bailey M.
        • Carolan M.G.
        IMRT treatment Monitor Unit verification using absolute calibrated BEAMnrc and Geant4 Monte Carlo simulations.
        J Phys Conf Ser. 2014; 489012020https://doi.org/10.1088/1742-6596/489/1/012020
        • Poole C.M.
        • Cornelius I.
        • Trapp J.V.
        • Langton C.M.
        Radiotherapy Monte Carlo simulation using cloud computing technology.
        Australas Phys Eng Sci Med. 2012; 35: 497-502
        • Locke C.
        • Zavgorodni S.
        Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans.
        Australas Phys Eng Sci Med. 2008; 31: 290-299
        • Aljarrah K.
        • Sharp G.C.
        • Neicu T.
        • Jiang S.B.
        Determination of the initial beam parameters in Monte Carlo linac simulation.
        Med Phys. 2006; 33: 850-858
        • Gourtsoyiannis N.
        • Tzedakis A.
        • Damilakis J.E.
        • Stratakis J.
        • Varveris H.
        • Gourtsoyiannis N.
        Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
        Med Phys. 2004; 31: 907-913
        • Sheikh-Bagheri D.
        • Rogers D.W.O.
        Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters.
        Med Phys. 2002; 29: 379-390
        • Kairn T.
        • Aland T.
        • Franich R.D.
        • Johnston P.N.
        • Kakakhel M.B.
        • Kenny J.
        • et al.
        Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device.
        Phys Med Biol. 2010; 55: N451-N463
        • Popescu I.A.
        • Shaw C.P.
        • Zavgorodni S.F.
        • Beckham W.A.
        Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
        Phys Med Biol. 2005; 50: 3375-3392
        • Kairn T.
        • Crowe S.B.
        • Poole C.M.
        • Fielding A.L.
        Effects of collimator backscatter in an Elekta linac by Monte Carlo simulation.
        Australas Phys Eng Sci Med. 2009; 32: 129-135
        • Liu H.H.
        • Mackie T.R.
        • McCullough E.C.
        Modeling photon output caused by backscattered radiation into the monitor chamber from collimator jaws using a Monte Carlo technique.
        Med Phys. 2000; 27: 737-744
        • Ma C.M.
        • Li J.
        Dose specification for radiation therapy: dose to water or dose to medium?.
        Phys Med Biol. 2011; 56: 3073-3089
        • Crowe S.B.
        • Kairn T.
        • Middlebrook N.
        • Hill B.
        • Christie D.R.
        • Knight R.T.
        • et al.
        Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity-modulated and volumetric-modulated arc radiotherapy.
        J Med Radiat Sci. 2013; 60: 131-138
        • Crowe S.B.
        • Kairn T.
        • Kenny J.
        • Knight R.T.
        • Hill B.
        • Langton C.M.
        • Trapp J.V.
        Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results.
        Australas Phys Eng Sci Med. 2014; 37: 475-482
        • Webb S.
        Use of a quantitative index of beam modulation to characterize dose conformality: illustration by a comparison of full beamlet IMRT, few-segment IMRT (fsIMRT) and conformal unmodulated radiotherapy.
        Phys Med Biol. 2003; 48: 2051-2062
        • Nicolini G.
        • Fogliata A.
        • Vanetti E.
        • Clivio A.
        • Ammazzalorso F.
        • Cozzi L.
        What is an acceptably smoothed fluence? Dosimetric and delivery considerations for dynamic sliding window IMRT.
        Radiat Oncol. 2007; 2: 42
        • Kairn T.
        • Crowe S.B.
        • Kenny J.
        • Knight R.T.
        • Trapp J.V.
        Predicting the likelihood of QA failure using treatment plan accuracy metrics.
        J Phys Conf Ser. 2014; 489012051https://doi.org/10.1088/1742-6596/489/1/012051
        • Santos T.
        • Ventura T.
        • do Carmo Lopes M.
        Evaluation of the complexity of treatment plans from a national IMRT/VMAT audit–Towards a plan complexity score.
        Physica Medica. 2020; 70: 75-84
        • Mancosu P.
        • Reggiori G.
        • Alongi F.
        • Cozzi L.
        • Fogliata A.
        • Lobefalo F.
        • et al.
        Total monitor units influence on plan quality parameters in volumetric modulated arc therapy for breast case.
        Physica Medica. 2014; 30: 296-300
        • Wall P.D.
        • Fontenot J.D.
        Application and comparison of machine learning models for predicting quality assurance outcomes in radiation therapy treatment planning.
        Inform Med Unlocked. 2020; 18100292
        • Antoine M.
        • Ralite F.
        • Soustiel C.
        • Marsac T.
        • Sargos P.
        • Cugny A.
        • Caron J.
        Use of metrics to quantify IMRT and VMAT treatment plan complexity: A systematic review and perspectives.
        Physica Medica. 2019; 64: 98-108
        • Crowe S.B.
        • Kairn T.
        • Middlebrook N.
        • Sutherland B.
        • Hill B.
        • Kenny J.
        • et al.
        Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results.
        Phys Med Biol. 2015; 60: 2587-2601
        • Lobo J.
        • Popescu I.A.
        Two new dosxyznrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, Tomotherapy and Cyberknife.
        Phys Med Biol. 2010; 55: 4431-4443
        • Kairn T.
        • Crowe S.B.
        • Langton C.M.
        • Trapp J.V.
        Bulk evaluation and comparison of radiotherapy treatment plans for breast cancer.
        Australas Phys Eng Sci Med. 2016; 39: 633-644
        • Kairn T.
        • Crowe S.B.
        Application of retrospective data analysis to clinical protocol design: Can the potential benefits of breath-hold techniques for breast radiotherapy be assessed without testing on patients?.
        Australas Phys Eng Sci Med. 2019; 42: 227-233
        • Kairn T.
        • Crowe S.B.
        Retrospective analysis of breast radiotherapy treatment plans: Curating the “non-curated”.
        J Med Imaging Radiat Oncol. 2019; 63: 517-529
        • Flanz J.
        • Paganetti H.
        Monte Carlo calculations in support of the commissioning of the Northeast Proton Therapy Center.
        Australas Phys Eng Sci Med. 2003; 26: 156-161
        • Yepes P.
        • Randeniya S.
        • Taddei P.J.
        • Newhauser W.D.
        Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer.
        Phys Med Biol. 2008; 54: N21-N28
        • Yepes P.
        • Adair A.
        • Grosshans D.
        • Mirkovic D.
        • Poenisch F.
        • Titt U.
        • et al.
        Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy.
        Phys Med Biol. 2018; 63045003
        • Newhauser W.
        • Fontenot J.
        • Koch N.
        • Dong L.
        • Lee A.
        • Zheng Y.
        • et al.
        Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate.
        Phys Med Biol. 2007; 52: 2937-2952
        • Giebeler A.
        • Fontenot J.
        • Balter P.
        • Ciangaru G.
        • Zhu R.
        • Newhauser W.
        Dose perturbations from implanted helical gold markers in proton therapy of prostate cancer.
        J Appl Clin Med Phys. 2009; 10: 63-70
        • Ramachandran P.
        • Tajaldeen A.
        • Roozen K.
        • Wanigaratne D.
        • Taylor D.
        • Kron T.
        A study of dose calculation algorithms using an IPSM phantom with different density materials for in-field and out-of-field conditions.
        Australas Phys Eng Sci Med. 2016; 39: 1177-1178https://doi.org/10.1007/s13246-016-0494-2
        • Kairn T.
        • Charles P.H.
        • Crowe S.B.
        • Trapp J.V.
        Effects of inaccurate small field dose measurements on calculated treatment doses.
        Australas Phys Eng Sci Med. 2016; 39: 747-753
      2. International Atomic Energy Agency. Commissioning of radiotherapy treatment planning systems: testing for typical external beam treatment techniques. IAEA-TECDOC-1583. Vienna: IAEA; 2008.

        • Ezzell G.A.
        • Burmeister J.W.
        • Dogan N.
        • LoSasso T.J.
        • Mechalakos J.G.
        • Mihailidis D.
        • et al.
        IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.
        Med Phys. 2009; 36: 5359-5373
        • Mullins J.
        • DeBlois F.
        • Syme A.
        Experimental characterization of the dosimetric leaf gap.
        Biomed Phys Eng Express. 2016; 2065013
        • Middlebrook N.D.
        • Sutherland B.
        • Kairn T.
        Optimisation of the dosimetric leaf gap for use in planning VMAT treatments of spine SABR cases.
        J Appl Clin Med Phys. 2017; 18: 133-139
        • Glenn M.C.
        • Peterson C.B.
        • Followill D.S.
        • Howell R.M.
        • Pollard-Larkin J.M.
        • Kry S.F.
        Reference dataset of users’ photon beam modeling parameters for the Eclipse, Pinnacle, and RayStation treatment planning systems.
        Med Phys. 2020; 47: 282-288