Highlights
- •Ultra-high dose rate reduces adverse side effects in radiotherapy (FLASH effect).
- •Studies and implementation in practice requires accurate dose measurements.
- •An European joint research project was started to develop a measurement framework.
- •Tools for dosimetry of ultra-high pulse dose rate beams will be provided.
Abstract
Keywords
1. Introduction
- Lee N.
- Chuang C.
- Quivey J.M.
- Phillips T.L.
- Akazawa P.
- Verhey L.J.
- Xia P.
- Favaudon V.
- Caplier L.
- Monceau V.
- Pouzoulet F.
- Sayarath M.
- Fouillade C.
- Poupon M.-F.
- Brito I.
- Hupé P.
- Bourhis J.
- Hall J.
- Fontaine J.-J.
- Vozenin M.-C.
Loo BW, Schuler E, Lartey FM, Rafat M, King GJ, Trovati S, Koong AC, Maxim PG. (P003) Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice. Int J Radiat Oncol Biol Phys 2017;98(2, Suppl.):E16, ISSN 0360-3016, doi: 10.1016/j.ijrobp.2017.02.101.
- Simmons D.A.
- Lartey F.M.
- Schüler E.
- Rafat M.
- King G.
- Kim A.
- Ko R.
- Semaan S.
- Gonzalez S.
- Jenkins M.
- Pradhan P.
- Shih Z.
- Wang J.
- von Eyben R.
- Graves E.E.
- Maxim P.G.
- Longo F.M.
- Loo B.W.
- Montay-Gruel P.
- Acharya M.M.
- Petersson K.
- Alikhani L.
- Yakkala C.
- Allen B.D.
- Ollivier J.
- Petit B.
- Jorge P.G.
- Syage A.R.
- Nguyen T.A.
- Baddour A.A.D.
- Lu C.
- Singh P.
- Moeckli R.
- Bochud F.
- Germond J.-F.
- Froidevaux P.
- Bailat C.
- Bourhis J.
- Vozenin M.-C.
- Limoli C.L.
- Levy K.
- Natarajan S.
- Wang J.
- Chow S.
- Eggold J.
- Loo P.
- Manjappa R.
- Lartey F.M.
- Schüler E.
- Skinner L.
- Rafat M.
- Ko R.
- Kim A.
- Al Rawi D.
- von Eyben R.
- Dorigo O.
- Casey K.M.
- Graves E.E.
- Bush K.
- Yu A.S.
- Koong A.C.
- Maxim P.G.
- Loo B.W.
- Rankin E.B.

- Montay-Gruel P.
- Acharya M.M.
- Petersson K.
- Alikhani L.
- Yakkala C.
- Allen B.D.
- Ollivier J.
- Petit B.
- Jorge P.G.
- Syage A.R.
- Nguyen T.A.
- Baddour A.A.D.
- Lu C.
- Singh P.
- Moeckli R.
- Bochud F.
- Germond J.-F.
- Froidevaux P.
- Bailat C.
- Bourhis J.
- Vozenin M.-C.
- Limoli C.L.
- Diffenderfer E.S.
- Verginadis I.I.
- Kim M.M.
- Shoniyozov K.
- Velalopoulou A.
- Goia D.
- Putt M.
- Hagan S.
- Avery S.
- Teo K.
- Zou W.
- Lin A.
- Swisher-McClure S.
- Koch C.
- Kennedy A.R.
- Minn A.
- Maity A.
- Busch T.M.
- Dong L.
- Koumenis C.
- Metz J.
- Cengel K.A.
Venkatesulu BP, Sharma A, Pollard-Larkin JM, Sadagopan R, Symons J, Neri S, Singh PK, Tailor R, Lin SH, Krishnan S. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci Rep 9(17180), doi: 10.1038/s41598-019-53562-y.
- Karsch L.
- Beyreuther E.
- Enghardt W.
- Gotz M.
- Masood U.
- Schramm U.
- Zeil K.
- Pawelke J.
- Oppelt M.
- Baumann M.
- Bergmann R.
- Beyreuther E.
- Brüchner K.
- Hartmann J.
- Karsch L.
- Krause M.
- Laschinsky L.
- Leßmann E.
- Nicolai M.
- Reuter M.
- Richter C.
- Sävert A.
- Schnell M.
- Schürer M.
- Woithe J.
- Kaluza M.
- Pawelke J.
- Bin J.
- Allinger K.
- Assmann W.
- Dollinger G.
- Drexler G.A.
- Friedl A.A.
- Habs D.
- Hilz P.
- Hoerlein R.
- Humble N.
- Karsch S.
- Khrennikov K.
- Kiefer D.
- Krausz F.
- Ma W.
- Michalski D.
- Molls M.
- Raith S.
- Reinhardt S.
- Röper B.
- Schmid T.E.
- Tajima T.
- Wenz J.
- Zlobinskaya O.
- Schreiber J.
- Wilkens J.J.

2. Overview of novel radiotherapy techniques using ultra-high pulse dose rate particle beams
2.1 FLASH radiotherapy
2.1.1 Electrons
- Levy K.
- Natarajan S.
- Wang J.
- Chow S.
- Eggold J.
- Loo P.
- Manjappa R.
- Lartey F.M.
- Schüler E.
- Skinner L.
- Rafat M.
- Ko R.
- Kim A.
- Al Rawi D.
- von Eyben R.
- Dorigo O.
- Casey K.M.
- Graves E.E.
- Bush K.
- Yu A.S.
- Koong A.C.
- Maxim P.G.
- Loo B.W.
- Rankin E.B.
- Fouillade C.
- Curras-Alonso S.
- Giuranno L.
- Quelennec E.
- Heinrich S.
- Bonnet-Boissinot S.
- Beddok A.
- Leboucher S.
- Karakurt H.U.
- Bohec M.
- Baulande S.
- Vooijs M.
- Verrelle P.
- Dutreix M.
- Londoño-Vallejo A.
- Favaudon V.
- Field S.B.
- Bewley D.K.
- Fouillade C.
- Curras-Alonso S.
- Giuranno L.
- Quelennec E.
- Heinrich S.
- Bonnet-Boissinot S.
- Beddok A.
- Leboucher S.
- Karakurt H.U.
- Bohec M.
- Baulande S.
- Vooijs M.
- Verrelle P.
- Dutreix M.
- Londoño-Vallejo A.
- Favaudon V.
- Field S.B.
- Bewley D.K.
- Field S.B.
- Bewley D.K.
- Levy K.
- Natarajan S.
- Wang J.
- Chow S.
- Eggold J.
- Loo P.
- Manjappa R.
- Lartey F.M.
- Schüler E.
- Skinner L.
- Rafat M.
- Ko R.
- Kim A.
- Al Rawi D.
- von Eyben R.
- Dorigo O.
- Casey K.M.
- Graves E.E.
- Bush K.
- Yu A.S.
- Koong A.C.
- Maxim P.G.
- Loo B.W.
- Rankin E.B.
- Favaudon V.
- Caplier L.
- Monceau V.
- Pouzoulet F.
- Sayarath M.
- Fouillade C.
- Poupon M.-F.
- Brito I.
- Hupé P.
- Bourhis J.
- Hall J.
- Fontaine J.-J.
- Vozenin M.-C.
- Levy K.
- Natarajan S.
- Wang J.
- Chow S.
- Eggold J.
- Loo P.
- Manjappa R.
- Lartey F.M.
- Schüler E.
- Skinner L.
- Rafat M.
- Ko R.
- Kim A.
- Al Rawi D.
- von Eyben R.
- Dorigo O.
- Casey K.M.
- Graves E.E.
- Bush K.
- Yu A.S.
- Koong A.C.
- Maxim P.G.
- Loo B.W.
- Rankin E.B.




- Favaudon V.
- Caplier L.
- Monceau V.
- Pouzoulet F.
- Sayarath M.
- Fouillade C.
- Poupon M.-F.
- Brito I.
- Hupé P.
- Bourhis J.
- Hall J.
- Fontaine J.-J.
- Vozenin M.-C.
- Schüler E.
- Trovati S.
- King G.
- Lartey F.
- Rafat M.
- Villegas M.
- Praxel A.J.
- Loo B.W.
- Maxim P.G.
- Montay-Gruel P.
- Acharya M.M.
- Petersson K.
- Alikhani L.
- Yakkala C.
- Allen B.D.
- Ollivier J.
- Petit B.
- Jorge P.G.
- Syage A.R.
- Nguyen T.A.
- Baddour A.A.D.
- Lu C.
- Singh P.
- Moeckli R.
- Bochud F.
- Germond J.-F.
- Froidevaux P.
- Bailat C.
- Bourhis J.
- Vozenin M.-C.
- Limoli C.L.
- Montay-Gruel P.
- Acharya M.M.
- Petersson K.
- Alikhani L.
- Yakkala C.
- Allen B.D.
- Ollivier J.
- Petit B.
- Jorge P.G.
- Syage A.R.
- Nguyen T.A.
- Baddour A.A.D.
- Lu C.
- Singh P.
- Moeckli R.
- Bochud F.
- Germond J.-F.
- Froidevaux P.
- Bailat C.
- Bourhis J.
- Vozenin M.-C.
- Limoli C.L.
- Adrian G.
- Konradsson E.
- Lempart M.
- Bäck S.
- Ceberg C.
- Petersson K.
- Alexander M.S.
- Wilkes J.G.
- Schroeder S.R.
- Buettner G.R.
- Wagner B.A.
- Du J.
- Gibson-Corley K.
- O’Leary B.R.
- Spitz D.R.
- Buatti J.M.
- Berg D.J.
- Bodeker K.L.
- Vollstedt S.
- Brown H.A.
- Allen B.G.
- Cullen J.J.
- Schüler E.
- Trovati S.
- King G.
- Lartey F.
- Rafat M.
- Villegas M.
- Praxel A.J.
- Loo B.W.
- Maxim P.G.
- Azinovic I.
- Calvo F.A.
- Puebla F.
- Aristu J.
- Martinez-Monge R.
- Favaudon V.
- Caplier L.
- Monceau V.
- Pouzoulet F.
- Sayarath M.
- Fouillade C.
- Poupon M.-F.
- Brito I.
- Hupé P.
- Bourhis J.
- Hall J.
- Fontaine J.-J.
- Vozenin M.-C.
- Levy K.
- Natarajan S.
- Wang J.
- Chow S.
- Eggold J.
- Loo P.
- Manjappa R.
- Lartey F.M.
- Schüler E.
- Skinner L.
- Rafat M.
- Ko R.
- Kim A.
- Al Rawi D.
- von Eyben R.
- Dorigo O.
- Casey K.M.
- Graves E.E.
- Bush K.
- Yu A.S.
- Koong A.C.
- Maxim P.G.
- Loo B.W.
- Rankin E.B.
- Fouillade C.
- Curras-Alonso S.
- Giuranno L.
- Quelennec E.
- Heinrich S.
- Bonnet-Boissinot S.
- Beddok A.
- Leboucher S.
- Karakurt H.U.
- Bohec M.
- Baulande S.
- Vooijs M.
- Verrelle P.
- Dutreix M.
- Londoño-Vallejo A.
- Favaudon V.
2.1.2 Protons
- Yogo A.
- Maeda T.
- Hori T.
- Sakaki H.
- Ogura K.
- Nishiuchi M.
- Sagisaka A.
- Kiriyama H.
- Okada H.
- Kanazawa S.
- Shimomura T.
- Nakai Y.
- Tanoue M.
- Sasao F.
- Bolton P.R.
- Murakami M.
- Nomura T.
- Kawanishi S.
- Kondo K.
- Kraft S.D.
- Richter C.
- Zeil K.
- Baumann M.
- Beyreuther E.
- Bock S.
- Bussmann M.
- Cowan T.E.
- Dammene Y.
- Enghardt W.
- Helbig U.
- Karsch L.
- Kluge T.
- Laschinsky L.
- Lessmann E.
- Metzkes J.
- Naumburger D.
- Sauerbrey R.
- Schürer M.
- Sobiella M.
- Woithe J.
- Schramm U.
- Pawelke J.
- Doria D.
- Kakolee K.F.
- Kar S.
- Litt S.K.
- Fiorini F.
- Ahmed H.
- Green S.
- Jeynes J.C.G.
- Kavanagh J.
- Kirby D.
- Kirkby K.J.
- Lewis C.L.
- Merchant M.J.
- Nersisyan G.
- Prasad R.
- Prise K.M.
- Schettino G.
- Zepf M.
- Borghesi M.
- Raschke S.
- Spickermann S.
- Toncian T.
- Swantusch M.
- Boeker J.
- Giesen U.
- Iliakis G.
- Willi O.
- Boege F.
- Pommarel L.
- Vauzour B.
- Mégnin-Chanet F.
- Bayart E.
- Delmas O.
- Goudjil F.
- Nauraye C.
- Letellier V.
- Pouzoulet F.
- Schillaci F.
- Romano F.
- Scuderi V.
- Cirrone G.A.P.
- Deutsch E.
- Flacco A.
- Malka V.
- Bayart E.
- Flacco A.
- Delmas O.
- Pommarel L.
- Levy D.
- Cavallone M.
- Megnin-Chanet F.
- Deutsch E.
- Malka V.
- Doria D.
- Kakolee K.F.
- Kar S.
- Litt S.K.
- Fiorini F.
- Ahmed H.
- Green S.
- Jeynes J.C.G.
- Kavanagh J.
- Kirby D.
- Kirkby K.J.
- Lewis C.L.
- Merchant M.J.
- Nersisyan G.
- Prasad R.
- Prise K.M.
- Schettino G.
- Zepf M.
- Borghesi M.
Girdhani S, Abel E, Katsis A, Rodriquez A, Senapati S, KuVillanueva A, et al., Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways. Cancer Res 2019;79(13 Suppl) LB–280, doi: 10.1158/1538-7445.AM2019-LB-280.
- Diffenderfer E.S.
- Verginadis I.I.
- Kim M.M.
- Shoniyozov K.
- Velalopoulou A.
- Goia D.
- Putt M.
- Hagan S.
- Avery S.
- Teo K.
- Zou W.
- Lin A.
- Swisher-McClure S.
- Koch C.
- Kennedy A.R.
- Minn A.
- Maity A.
- Busch T.M.
- Dong L.
- Koumenis C.
- Metz J.
- Cengel K.A.
2.2 VHEE radiotherapy
- Moskvin V.
- Salvat F.
- Stewart D.K.
- DesRosiers C.M.
Lagzda A, Angal-Kalinin D, Jones J, Jones R, Kirkby K. Relative insensitivity to inhomogeneities on very high energy electron dose distributions. In: Proc. of international particle accelerator conference (IPAC’17), Copenhagen, Denmark, May, 2017, no. 8 in International Particle Accelerator Conference, JACoW, Geneva, Switzerland, ISBN 978-3-95450-182-3. p. 4791–4, doi: 10.18429/JACoW-IPAC2017-THPVA139, 2017.
- Kokurewicz K.
- Brunetti E.
- Welsh G.H.
- Wiggins S.M.
- Boyd M.
- Sorensen A.
- Chalmers A.J.
- Schettino G.
- Subiel A.
- DesRosiers C.
- Jaroszynski D.A.
- Gamba D.
- Corsini R.
- Curt S.
- Doebert S.
- Farabolini W.
- Mcmonagle G.
- Skowronski P.K.
- Tecker F.
- Zeeshan S.
- Adli E.
- Lindstrøm C.A.
- Ross A.
- Wroe L.M.
2.3 Laser-driven beams
- Karsch L.
- Beyreuther E.
- Enghardt W.
- Gotz M.
- Masood U.
- Schramm U.
- Zeil K.
- Pawelke J.
- Higginson A.
- Gray R.J.
- King M.
- Dance R.J.
- Williamson S.D.R.
- Butler N.M.H.
- Wilson R.
- Capdessus R.
- Armstrong C.
- Green J.S.
- Hawkes S.J.
- Martin P.
- Wei W.Q.
- Mirfayzi S.R.
- Yuan X.H.
- Kar S.
- Borghesi M.
- Clarke R.J.
- Neely D.
- McKenna P.
- Wagner F.
- Deppert O.
- Brabetz C.
- Fiala P.
- Kleinschmidt A.
- Poth P.
- Schanz V.A.
- Tebartz A.
- Zielbauer B.
- Roth M.
- Stöhlker T.
- Bagnoud V.
- Danson C.N.
- Haefner C.
- Bromage J.
- Butcher T.
- Chanteloup J.-C.F.
- Chowdhury E.A.
- Galvanauskas A.
- Gizzi L.A.
- Hein J.
- Hillier D.I.
- Hopps N.W.
- Kato Y.
- Khazanov E.A.
- Kodama R.
- Korn G.
- Li R.
- Li Y.
- Limpert J.
- Ma J.
- Nam C.H.
- Neely D.
- Papadopoulos D.
- Penman R.R.
- Qian L.
- Rocca J.J.
- Shaykin A.A.
- Siders C.W.
- Spindloe C.
- Szatmári S.
- Trines R.M.G.M.
- Zhu J.
- Zhu P.
- Zuegel J.D.
Richter C, Beyreuther E, Dammene Y, Enghardt W, Kaluza M, Karsch L, et al. SU-GG-T-459: Laser-based particle acceleration for future ion therapy: current status of the joint project OnCOOPtics with special focus on beam delivery and dosimetry. Med Phys 2010;37(6Part23):3292–3292, ISSN 0094-2405, doi: 10.1118/1.3468857.
- Jahn D.
- Schumacher D.
- Brabetz C.
- Ding J.
- Weih S.
- Kroll F.
- Brack F.E.
- Schramm U.
- Blaževic A.
- Roth M.
- Lindner F.H.
- Haffa D.
- Bin J.H.
- Englbrecht F.
- Gao Y.
- Gebhard J.
- Hartmann J.
- Hilz P.
- Kreuzer C.
- Lehrack S.
- Ostermayr T.M.
- Rösch T.F.
- Speicher M.
- Würl M.
- Parodi K.
- Schreiber J.
- Thirolf P.G.
3. Metrological challenges and possible solutions for dosimetry at ultra-high pulse dose rate particle beams
3.1 Primary standards
3.1.1 Fricke dosimetry in UHPDR electron beams
Boag JW, Epp E, Fielden EM, Parker RP. ICRU Report 34: The Dosimetry of Pulsed Radiation, 3. Chemical Dosimetry, Reports of the International Commission on Radiation Units and Measurements os-18 1982;(1):14–21, ISSN 0579-5435, doi: 10.1093/jicru_os18.1.14, URL: https://journals.sagepub.com/doi/abs/10.1093/jicru_os18.1.14.
Boag JW, Epp E, Fielden EM, Parker RP. ICRU Report 34: The Dosimetry of Pulsed Radiation, 3. Chemical Dosimetry, Reports of the International Commission on Radiation Units and Measurements os-18 1982;(1):14–21, ISSN 0579-5435, doi: 10.1093/jicru_os18.1.14, URL: https://journals.sagepub.com/doi/abs/10.1093/jicru_os18.1.14.
3.1.2 Graphite calorimeter for UHPDR proton beams
Palmans H, Thomas R, Simon M, Duane S, Kacperek S, DuSautoy A, Verhaegen F. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Phys Med Biol 2004;49(16):3737–49, ISSN 0031-9155, doi: 10.1088/0031-9155/49/16/019, World Congress on Medical Physics and Biomedical Engineering, Sydney, AUSTRALIA, AUG 24–29, 2003.
IAEA. Absorbed Dose Determination in External Beam Radiotherapy, no. 398 in Technical Reports Series, International atomic energy agency, Technical Reports Series No. 398, Vienna, ISBN 92-0-102200-X, URL:https://www.iaea.org/publications/5954/absorbed-dose-determination-in-external-beam-radiotherapy; 2006.
Katsis A, Busold S, Mascia A, Heese J, Marshall A, Smith C, et al. Treatment Planning and Dose Monitoring for Small Animal Proton FLASH Irradiations. Med Phys 2019;46(6)E380, ISSN 0094-2405, Annual Meeting of the American-Association-of-Physicists-in-Medicine (AAPM), San Antonio, TX, JUL 14–18, 2019.
Palmans H, Thomas R, Simon M, Duane S, Kacperek S, DuSautoy A, Verhaegen F. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Phys Med Biol 2004;49(16):3737–49, ISSN 0031-9155, doi: 10.1088/0031-9155/49/16/019, World Congress on Medical Physics and Biomedical Engineering, Sydney, AUSTRALIA, AUG 24–29, 2003.

- Richter C.
- Karsch L.
- Dammene Y.
- Kraft S.
- Metzkes J.
- Schramm U.
- Schrer M.
- Sobiella M.
- Weber A.
- Zeil K.
- Pawelke J.
- Pommarel L.
- Vauzour B.
- Mégnin-Chanet F.
- Bayart E.
- Delmas O.
- Goudjil F.
- Nauraye C.
- Letellier V.
- Pouzoulet F.
- Schillaci F.
- Romano F.
- Scuderi V.
- Cirrone G.A.P.
- Deutsch E.
- Flacco A.
- Malka V.
- Fiorini F.
- Kirby D.
- Borghesi M.
- Doria D.
- Jeynes J.
- Kakolee K.
- Kar S.
- Kaur S.
- Kirby K.
- Merchant M.
- Green S.
- Bolton P.
- Borghesi M.
- Brenner C.
- Carroll D.
- De Martinis C.
- Fiorini F.
- Flacco A.
- Floquet V.
- Fuchs J.
- Gallegos P.
- Giove D.
- Green J.
- Green S.
- Jones B.
- Kirby D.
- McKenna P.
- Neely D.
- Nuesslin F.
- Prasad R.
- Reinhardt S.
- Roth M.
- Schramm U.
- Scott G.
- Ter-Avetisyan S.
- Tolley M.
- Turchetti G.
- Wilkens J.
3.1.3 Graphite calorimeter as reference for dosimetry of VHEE beams

- Gamba D.
- Corsini R.
- Curt S.
- Doebert S.
- Farabolini W.
- Mcmonagle G.
- Skowronski P.K.
- Tecker F.
- Zeeshan S.
- Adli E.
- Lindstrøm C.A.
- Ross A.
- Wroe L.M.
- Boag J.W.
3.1.4 Graphite calorimeter for UHPDR electron beams

3.1.5 Al calorimeter for UHPDR electron beams
- Bourgouin A.
- Cojocaru C.
- Ross C.
- McEwen M.

3.2 Secondary standards and relative dosimetry
3.2.1 Ionization chambers
IAEA. Absorbed Dose Determination in External Beam Radiotherapy, no. 398 in Technical Reports Series, International atomic energy agency, Technical Reports Series No. 398, Vienna, ISBN 92-0-102200-X, URL:https://www.iaea.org/publications/5954/absorbed-dose-determination-in-external-beam-radiotherapy; 2006.
IAEA. Absorbed Dose Determination in External Beam Radiotherapy, no. 398 in Technical Reports Series, International atomic energy agency, Technical Reports Series No. 398, Vienna, ISBN 92-0-102200-X, URL:https://www.iaea.org/publications/5954/absorbed-dose-determination-in-external-beam-radiotherapy; 2006.
where stands for the electric field, corresponds to the number of electron-ion pairs released per unit time and volume due to ionization and and are the positive ion, negative ion and electron densities in the chamber, and are the ion-to-ion and electron-to-ion recombination constants, are the positive and negative ion mobilities, is the electron attachment constant and is the electron drift speed.

3.2.2 Graphite Probe Calorimeter ‘Aerrow’
- Renaud J.
- Marchington D.
- Seuntjens J.
- Sarfehnia A.
- Renaud J.
- Sarfehnia A.
- Bancheri J.
- Seuntjens J.

- Renaud J.
- Sarfehnia A.
- Bancheri J.
- Seuntjens J.
- Renaud J.
- Seuntjens J.
- Sarfehnia A.
3.2.3 Silicon diode detectors
Knoll GF. Radiation detection and measurement. 4th ed., New York, NY: Wiley. URL:https://cds.cern.ch/record/1300754, 2010.
- Shi J.
- Simon W.E.
- Zhu T.C.
- Saini A.S.
- Zhu T.C.
- Jursinic P.A.
- Da Via C.
- Boscardin M.
- Dalla Betta G.-F.
- Darbo G.
- Fleta C.
- Gemme C.
- Grenier P.
- Grinstein S.
- Hansen T.-E.
- Hasi J.
- Kenney C.
- Kok A.
- Parker S.
- Pellegrini G.
- Vianello E.
- Zorzi N.
- Fleta C.
- Esteban S.
- Baselga M.
- Quirion D.
- Pellegrini G.
- Guardiola C.
- Cortés-Giraldo M.A.
- López J.G.
- Ramos M.C.J.
- Gómez F.
- Lozano M.
- Prieto-Pena J.
- Gómez F.
- Fleta C.
- Guardiola C.
- Pellegrini G.
- Donetti M.
- Giordanengo S.
- González-Castaño D.M.
- Pardo-Montero J.

3.2.4 Diamond detector
- Pimpinella M.
- Stravato A.
- Guerra A.S.
- De Coste V.
- Marinelli M.
- Verona-Rinati G.
- Falco M.D.
- Di Venanzio C.
- Marinelli M.
- Milani E.
- Prestopino G.
- Verona C.
- Verona-Rinati G.
- Falco M.D.
- Bagalá P.
- Santoni R.
- Pimpinella M.
- Bagalá P.
- Di Venanzio C.
- Falco M.D.
- Guerra A.S.
- Marinelli M.
- Milani E.
- Pimpinella M.
- Pompili F.
- Prestopino G.
- Santoni R.
- Tonnetti A.
- Verona C.
- Verona-Rinati G.
- Laub W.U.
- Crilly R.
- Pimpinella M.
- Ciancaglioni I.
- Consorti R.
- Venanzio C.D.
- Guerra A.S.
- Petrucci A.
- Stravato A.
- Verona-Rinati G.
- Mandapaka A.K.
- Ghebremedhin A.
- Patyal B.
- Marinelli M.
- Prestopino G.
- Verona C.
- Verona-Rinati G.
- Marinelli M.
- Pompili F.
- Prestopino G.
- Verona C.
- Verona-Rinati G.
- Cirrone G.A.P.
- Cuttone G.
- La Rosa R.M.
- Raffaele L.
- Romano F.
- Tuvé C.
- Di Venanzio C.
- Marinelli M.
- Tonnetti A.
- Verona-Rinati G.
- Falco M.D.
- Pimpinella M.
- Ciccotelli A.
- De Stefano S.
- Felici G.
- Marangoni F.
3.2.5 TimePix3 detector
- Poikela T.
- Plosila J.
- Westerlund T.
- Campbell M.
- Gaspari M.D.
- Llopart X.
- Gromov V.
- Kluit R.
- van Beuzekom M.
- Zappon F.
- Zivkovic V.
- Brezina C.
- Desch K.
- Fu Y.
- Kruth A.

3.3 Beam monitoring
3.3.1 Monitor chambers and current transformers for FLASH electron beams
3.3.2 Monitor chambers for FLASH proton beams
- Courtois C.
- Boissonnat G.
- Brusasco C.
- Colin J.
- Cussol D.
- Fontbonne J.M.
- Marchand B.
- Mertens T.
- de Neuter S.
- Peronnel J.
- Boissonnat G.
- Fontbonne J.-M.
- Balanzat E.
- Boumard F.
- Carniol B.
- Cassimi A.
- Colin J.
- Cussol D.
- Etasse D.
- Fontbonne C.
- Frelin A.-M.
- Hommet J.
- Salvador S.
3.4 Stray radiation
- Rühm W.
- Ainsbury E.
- Breustedt B.
- Caresana M.
- Gilvin P.
- Knezevic Z.
- Rabus H.
- Stolarczyk L.
- Vargas A.
- Bottollier-Depois J.
- Harrison R.
- Lopez M.
- Stadtmann H.
- Tanner R.
- Vanhavere F.
- Woda C.
- Clairand I.
- Fantuzzi E.
- Fattibene P.
- Hupe O.
- Olko P.
- Olšovcovä V.
- Schuhmacher H.
- Alves J.
- Miljanic S.
3.4.1 Photons, electrons and protons
- Poikela T.
- Plosila J.
- Westerlund T.
- Campbell M.
- Gaspari M.D.
- Llopart X.
- Gromov V.
- Kluit R.
- van Beuzekom M.
- Zappon F.
- Zivkovic V.
- Brezina C.
- Desch K.
- Fu Y.
- Kruth A.
3.4.2 Neutrons
- Ferrari A.
- Ferrarini M.
- Pelliccioni M.
Caresana M, Ferrarini M, Manessi GP, Silari M, Varoli V. LUPIN, a new instrument for pulsed neutron fields. Nucl Instrum Methods Phys Res Sect A Accelerat Spectr Detect Assoc Equip 2013;712:15–26, ISSN 0168-9002. URL:http://www.sciencedirect.com/science/article/pii/S016890021300168X.
- Caresana M.
- Denker A.
- Esposito A.
- Ferrarini M.
- Golnik N.
- Hohmann E.
- Leuschner A.
- Luszik-Bhadra M.
- Manessi G.
- Mayer S.
- Ott K.
- Röhrich J.
- Silari M.
- Trompier F.
- Volnhals M.
- Wielunski M.
- Cassell C.
- Ferrarini M.
- Rosenfeld A.
- Caresana M.
Roberts NJ, Boso A. Investigation of digital electronics for the NPL Bonner Sphere Spectrometer. Nucl Instrum Methods Phys Res Sect A Accelerat Spectr Detect Assoc Equip 2020;969:163959, ISSN 0168-9002. URL:http://www.sciencedirect.com/science/article/pii/S0168900220304290.
4. The UHDpulse project
4.1 Consortium
4.2 Objectives
- •To develop a metrological framework, including SI-traceable primary and secondary reference standards and validated reference methods for dosimetry measurements for particle beams with ultra- high pulse dose rates.
- •To characterise the response of available detector systems in particle beams with ultra-high dose per pulse or with ultra-short pulse duration.
- •To develop traceable and validated methods for relative dosimetry and for the characterisation of stray radiation outside the primary pulsed particle beams.
- •To provide the input data for future Codes of Practice for absolute dose measurements in particle beams with ultra-high pulse dose rates.
4.3 Work packages

5. Conclusion
Acknowledgements
References
- How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis.Radiother Oncol. 2016; 119 (ISSN 0167-8140): 5-11https://doi.org/10.1016/j.radonc.2016.02.016
- A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma.BJU Int. 2012; 110 (ISSN 1464-4096): E737-E743https://doi.org/10.1111/j.1464-410x.2012.11550.x
- Developments in Stereotactic Body Radiotherapy.Cancers. 2018; 10 (ISSN 2072-6694): 497https://doi.org/10.3390/cancers10120497
- OA24.05 The Nordic HILUS-Trial – First Report of a Phase II Trial of SBRT of Centrally Located Lung Tumors.J Thoracic Oncol. 2017; 12 (ISSN 1556-0864): S340https://doi.org/10.1016/j.jtho.2016.11.369
- Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961.Neuro Oncol. 2012; 15 (ISSN 1522-8517): 97-103https://doi.org/10.1093/neuonc/nos267
- Late morbidity and mortality among medulloblastoma survivors diagnosed across three decades: a report from the childhood cancer survivor study.JCO. 2020; 37 (ISSN 0732-183X): 731-740https://doi.org/10.1200/jco.18.00969
- Skin toxicity due to intensity-modulated radiotherapy for head-and-neck carcinoma.Int J Radiat Oncolo Biol Phys. 2002; 53 (ISSN 0360-3016): 630-637https://doi.org/10.1016/S0360-3016(02)02756-6
- Radiation oncology in the era of precision medicine.Nat Rev Cancer. 2016; 16 (ISSN 1474-1768): 234-249https://doi.org/10.1038/nrc.2016.18
- Role of palliative radiotherapy in the management of mural cardiac metastases: who, when and how to treat? A case series of 10 patients.Cancer Med. 2020; 5 (ISSN 2045-7634): 989-996https://doi.org/10.1002/cam4.619
- Combined Immunochemotherapy With Reduced Whole-Brain Radiotherapy for Newly Diagnosed Primary CNS Lymphoma.JCO. 2020; 25 (ISSN 0732-183X): 4730-4735https://doi.org/10.1200/jco.2007.12.5062
- Whither whole brain radiotherapy for primary CNS lymphoma?.Neuro Oncol. 2014; 16 (ISSN 1522-8517): 1032-1034https://doi.org/10.1093/neuonc/nou122
- Survival of mammalian cells exposed to X rays at ultra-high dose-rates.BJR. 1969; 42 (ISSN 0007-1285): 102-107https://doi.org/10.1259/0007-1285-42-494-102
- Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.Sci Transl Med. 2014; 6 (245ra93)https://doi.org/10.1126/scitranslmed.3008973
Loo BW, Schuler E, Lartey FM, Rafat M, King GJ, Trovati S, Koong AC, Maxim PG. (P003) Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice. Int J Radiat Oncol Biol Phys 2017;98(2, Suppl.):E16, ISSN 0360-3016, doi: 10.1016/j.ijrobp.2017.02.101.
- The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients.Clin Cancer Res. 2019; 25: 35https://doi.org/10.1158/1078-0432.CCR-17-3375
- Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken.Clin Oncol. 2019; 31 (ISSN 0936-6555): 407-415https://doi.org/10.1016/j.clon.2019.04.001
- Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation.Radiother Oncol. 2019; 139 (ISSN 0167-8140): 4-10https://doi.org/10.1016/j.radonc.2019.06.006
- Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species.Proc Natl Acad Sci USA. 2019; 116: 10943https://doi.org/10.1073/pnas.1901777116
- Treatment of a first patient with FLASH-radiotherapy.Radiother Oncol. 2019; 139 (ISSN 0167-8140): 18-22https://doi.org/10.1016/j.radonc.2019.06.019
- FLASH irradiation enhances the therapeutic index of abdominal radiotherapy in mice. 2019; bioRxiv 2019 (12.873414)https://doi.org/10.1101/2019.12.12.873414
- Design Implementation and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System.Int J Radiat Oncol Biol Phys. 2020; 106 (ISSN 0360-3016): 440-448https://doi.org/10.1016/j.ijrobp.2019.10.049
- High dose-per-pulse electron beam dosimetry: commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use.Med Phys. 2018; 45 (ISSN 0094-2405): 863-874https://doi.org/10.1002/mp.12713
- TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation.Med Phys. 2016; 43 (ISSN 0094-2405): 3783https://doi.org/10.1118/1.4957690
Venkatesulu BP, Sharma A, Pollard-Larkin JM, Sadagopan R, Symons J, Neri S, Singh PK, Tailor R, Lin SH, Krishnan S. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci Rep 9(17180), doi: 10.1038/s41598-019-53562-y.
- Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold?.Front Oncol. 2020; 9 (ISSN 2234-943X): 1563https://doi.org/10.3389/fonc.2019.01563
- Review of electron beam therapy physics.Phys Med Biol. 2006; 51 (ISSN 1361-6560): R455-R489https://doi.org/10.1088/0031-9155/51/13/R25
- 150–250 MeV electron beams in radiation therapy.Phys Med Biol. 2000; 45 (ISSN 1361-6560): 1781-1805https://doi.org/10.1088/0031-9155/45/7/306
- GeV electron beams from a centimetre-scale accelerator.Nat Phys. 2006; 2 (ISSN 1745-2481. URL: https://doi.org/10.1038/nphys418): 696-699
- Treatment planning for laser-accelerated very-high energy electrons.Phys Med Biol. 2009; 54 (ISSN 1361-6560): 3315-3328https://doi.org/10.1088/0031-9155/54/11/003
- Towards ion beam therapy based on laser plasma accelerators.Acta Oncologica. 2017; 56 (ISSN 0284-186X. URL: https://doi.org/10.1080/0284186X.2017.1355111): 1359-1366https://doi.org/10.1080/0284186x.2017.1355111
McManus M, Romano F, Lee ND, Farabolini W, Gilardi A, Royle G, Palmans H, Subiel A. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Nat Sci Rep 10(9089), doi: 10.1038/s41598-020-65819-y.
- Comparison study of in vivo dose response to laser-driven versus conventional electron beam.Radiat Environ Biophys. 2015; 54 (ISSN 1432-2099. URL: https://doi.org/10.1007/s00411-014-0582-1): 155-166
- A laser-driven nanosecond proton source for radiobiological studies.Appl Phys Lett. 2012; 101 (ISSN 0003-6951. URL: https://doi.org/10.1063/1.4769372): 243701https://doi.org/10.1063/1.4769372
Patriarca A, Fouillade C, Auger M, Martin F, Pouzoulet F, Nauraye C, et al. Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. Int J Radiat Oncol Biol Phys 2018;102(3):619–626, ISSN 0360-3016, doi: 10.1016/j.ijrobp.2018.06.403.
- High dose-per-pulse electron beam dosimetry – A model to correct for the ion recombination in the Advanced Markus ionization chamber.Med Phys. 2017; 44 (ISSN 0094-2405): 1157-1167https://doi.org/10.1002/mp.12111
- Clinical translation of FLASH radiotherapy: Why and how?.Radiother Oncol. 2019; 139 (ISSN 0167-8140): 11-17https://doi.org/10.1016/j.radonc.2019.04.008
- FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence.Clin Cancer Res. 2019; (clincanres.1440.2019.)https://doi.org/10.1158/1078-0432.CCR-19-1440
- Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s.Radiother Oncol. 2017; 124 (ISSN 0167-8140): 365-369https://doi.org/10.1016/j.radonc.2017.05.003
- Effects of dose-rate on the radiation response of rat skin.Int J Radiat Biol Related Stud Phys Chem Med. 1974; 26 (ISSN 0020-7616): 259-267https://doi.org/10.1080/09553007414551221
- Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator.Int J Radiat Oncol Biol Phys. 2017; 97 (ISSN 0360-3016): 195-203https://doi.org/10.1016/j.ijrobp.2016.09.018
- A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio.Phys Med Biol. 2019; 64 (ISSN 1361-6560): 185005https://doi.org/10.1088/1361-6560/ab3769
- An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses.Radiother Oncol. 2019; 139 (ISSN 0167-8140): 23-27https://doi.org/10.1016/j.radonc.2019.03.028
- Reproductive survival of mammalian cells after irradiation at ultra-high dose-rates: further observations and their importance for radiotherapy.BJR. 2020; 45 (ISSN 0007-1285): 171-177https://doi.org/10.1259/0007-1285-45-531-171
- The FLASH effect depends on oxygen concentration.BJR. 2019; (20190702. ISSN 0007-1285)https://doi.org/10.1259/bjr.20190702
Vordermark D, Horsman MR. Hypoxia as a biomarker and for personalized radiation oncology. In: Baumann M, Krause M, Cordes N, editors. Molecular radio-oncology. Recent results in cancer research; vol. 198, Berlin, Heidelberg: Springer; 2016. doi: 10.1007/978-3-662-49651-0_6.
- Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer.Cancer Res. 2018; 78 (ISSN 0008-5472. URL:https://cancerres.aacrjournals.org/content/78/24/6838): 6838-6851https://doi.org/10.1158/0008-5472.CAN-18-1680
- Intraoperative radiation therapy.JCO. 2007; 25 (ISSN 0732-183X): 971-977https://doi.org/10.1200/jco.2006.10.0255
- Long-term normal tissue effects of intraoperative electron radiation therapy (IOERT): late sequelae, tumor recurrence, and second malignancies.Int J Radiat Oncol Biol Phys. 2001; 49 (ISSN 0360-3016): 597-604https://doi.org/10.1016/S0360-3016(00)01475-9
- Biological effects in normal cells exposed to FLASH dose rate protons.Radiother Oncol. 2019; 139 (ISSN 0167-8140): 51-55https://doi.org/10.1016/j.radonc.2019.02.009
- No Evidence for a Different RBE between Pulsed and Continuous 20 MeV Protons.Radiat Res. 2009; 172: 567-574https://doi.org/10.1667/RR1539.1
- Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue.Radiother Oncol. 2010; 95 (ISSN 0167-8140): 66-72https://doi.org/10.1016/j.radonc.2010.03.010
- Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline.Appl Phys Lett. 2011; 98 (053701, ISSN 0003-6951)https://doi.org/10.1063/1.3551623
- Survival of tumor cells after proton irradiation with ultra-high dose rates.Radiat Oncol. 2011; 6 (ISSN 1748-717X): 139https://doi.org/10.1186/1748-717X-6-139
- Dose-dependent biological damage of tumour cells by laser-accelerated proton beams.New J Phys. 2010; 12 (085003, ISSN 1367-2630)https://doi.org/10.1088/1367-2630/12/8/085003
- Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses.Appl Phys B. 2013; 110 (ISSN 1432-0649): 437-444https://doi.org/10.1007/s00340-012-5275-3
- Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s.AIP Adv. 2012; 2011209https://doi.org/10.1063/1.3699063
- DNA DSB repair dynamics following irradiat