Highlights
- •Overview about recent advances in X-ray breast imaging in two- and three-dimensions.
- •Multimodal grating-based phase-contrast mammography improves soft-tissue contrast.
- •Absorption-contrast breast computed tomography towards clinical implementation.
- •Developing propagation- and grating-based phase-contrast breast computed tomography.
Abstract
Keywords
1. Background
- Hendrick R.E.
- Baker A.J.
- Helvie A.M.
- Paci E.
- Broeders M.
- Hofvind S.
- Puliti D.
- Duffy S.
- Sankatsing V.
- van Ravesteyn N.
- Heijnsdijk E.
- Looman W.N.C.
- van Luijt P.
- Fracheboud J.
- et al.
- Riedl C.
- Luft N.
- Bernhart C.
- Weber M.
- Bernathova M.
- Tea M.
- et al.
- Riedl C.
- Luft N.
- Bernhart C.
- Weber M.
- Bernathova M.
- Tea M.
- et al.
- Autier P.
- Boniol M.
- Koechlin A.
- Pizot C.
- Boniol M.
- Gennaro G.
- Toledano A.
- Di Maggio C.
- Baldan E.
- Bezzon E.
- La Grassa M.
- et al.
2. Two-Dimensional X-ray breast imaging
2.1 Phase-Contrast Mammography
- Dreossi D.
- Abrami A.
- Arfelli F.
- Bregant P.
- Casarin K.
- Chenda V.
- et al.
2.2 Grating-Based Mammography
2.2.1 Classification of Microcalcifications using X-ray Dark-Field Imaging
- Forte S.
- Wang Z.
- Arboleda C.
- Lång K.
- Singer G.
- Kubik-Huch R.A.
- et al.

2.2.2 Improvements by Bi-Directional Phase-Contrast Imaging
- Scherer K.
- Birnbacher L.
- Chabior M.
- Herzen J.
- Mayr D.
- Grandl S.
- et al.

- Scherer K.
- Birnbacher L.
- Chabior M.
- Herzen J.
- Mayr D.
- Grandl S.
- et al.
- Scherer K.
- Birnbacher L.
- Chabior M.
- Herzen J.
- Mayr D.
- Grandl S.
- et al.
2.2.3 Dose-Compatible Phase-Contrast Mammography at a Compact Synchrotron Source

2.2.4 Enhanced Delineation of Breast Cancer Features
2.3 Grating-Based Mammography towards Clinical Implementation
- Schröter T.J.
- Koch F.
- Meyer P.
- Baumann M.
- Münch D.
- Kunka D.
- et al.
- Schröter T.J.
- Koch F.J.
- Meyer P.
- Kunka D.
- Meiser J.
- Willer K.
- et al.

3. Three-Dimensional X-ray Breast Imaging
3.1 Overview of Absorption-Based Breast Computed Tomography (BCT)
- Berger N.
- Marcon M.
- Saltybaeva N.
- Kalender A.W.
- Alkadhi H.
- Frauenfelder T.
- et al.
- Berger N.
- Marcon M.
- Saltybaeva N.
- Kalender A.W.
- Alkadhi H.
- Frauenfelder T.
- et al.

3.2 Phase-Contrast Breast Computed Tomography
3.2.1 Initial Results for Grating-Based Phase-Contrast Breast Computed Tomography (phase-contrast BCT)
- Grandl S.
- Willner M.
- Herzen J.
- Sztrókay-Gaul A.
- Mayr D.
- Auweter S.
- et al.
- Hellerhoff K.
- Birnbacher L.
- Sztrókay-Gaul A.
- Grandl S.
- Auweter S.
- Willner M.
- et al.
- Willner M.
- Viermetz M.
- Marschner M.
- Scherer K.
- Braun C.
- Fingerle A.
- et al.
- Grandl S.
- Willner M.
- Herzen J.
- Sztrókay-Gaul A.
- Mayr D.
- Auweter S.
- et al.
- Willner M.
- Viermetz M.
- Marschner M.
- Scherer K.
- Braun C.
- Fingerle A.
- et al.
- Hellerhoff K.
- Birnbacher L.
- Sztrókay-Gaul A.
- Grandl S.
- Auweter S.
- Willner M.
- et al.

- Grandl S.
- Willner M.
- Herzen J.
- Sztrókay-Gaul A.
- Mayr D.
- Auweter S.
- et al.
- Hellerhoff K.
- Birnbacher L.
- Sztrókay-Gaul A.
- Grandl S.
- Auweter S.
- Willner M.
- et al.
- Hellerhoff K.
- Birnbacher L.
- Sztrókay-Gaul A.
- Grandl S.
- Auweter S.
- Willner M.
- et al.
- Grandl S.
- Willner M.
- Herzen J.
- Sztrókay-Gaul A.
- Mayr D.
- Auweter S.
- et al.
- Grandl S.
- Willner M.
- Herzen J.
- Sztrókay-Gaul A.
- Mayr D.
- Auweter S.
- et al.
- Hellerhoff K.
- Birnbacher L.
- Sztrókay-Gaul A.
- Grandl S.
- Auweter S.
- Willner M.
- et al.
3.2.2 Propagation-Based Phase-Contrast Imaging at the Elettra Synchrotron Trieste and the Australian Synchrotron
- Piai A.
- Contillo A.
- Arfelli F.
- Bonazza D.
- Brombal L.
- Assunta Cova M.
- et al.
- Piai A.
- Contillo A.
- Arfelli F.
- Bonazza D.
- Brombal L.
- Assunta Cova M.
- et al.

- Tavakoli Taba S.
- Baran P.
- Nesterets Y.I.
- Pacile S.
- Wienbeck S.
- Dullin C.
- et al.
- Tavakoli Taba S.
- Arhatari B.D.
- Nesterets Y.I.
- Gadomkar Z.
- Mayo S.C.
- Thompson D.
- et al.
- Tavakoli Taba S.
- Baran P.
- Nesterets Y.I.
- Pacile S.
- Wienbeck S.
- Dullin C.
- et al.
4. Closing Remarks
Declaration of Competing Interest
Acknowledgements
References
WHO. Global Health Observatory (GHO) data: Women and cervical and breast cancer n.d.
WHO. Global Health Observatory (GHO) data: Women and cervical and breast cancer. World Heal Organ 2020. https://www.who.int/gho/women_and_health/diseases_risk_factors/cancer_text/en/.
WHO. Breast cancer. World Heal Organ 2020. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.
- Breast cancer deaths averted over 3 decades.Cancer. 2019; https://doi.org/10.1002/cncr.31954
- European Breast Cancer Service Screening Outcomes: A First Balance Sheet of the Benefits and Harms.Cancer Epidemiol Biomarkers & Prev. 2014; 23: 1159-1163https://doi.org/10.1158/1055-9965.EPI-13-0320
- Mammography Screening and Breast Cancer Mortality in New South Wales, Australia.Cancer Causes Control. 2004; 15: 543-550https://doi.org/10.1023/B:CACO.0000036153.95908.f2
Paap E, L M Verbeek A, Puliti D, Paci E, Broeders M. Breast cancer screening case-control study design: Impact on breast cancer mortality. Ann Oncol 2010;22:863–9. https://doi.org/10.1093/annonc/mdq44.
E. Paap L.M. Verbeek A, A.M. Botterweck A, van Doorne-Nagtegaal H, Imhof-Tas M, Koning H, et al. Breast cancer screening halves the risk of breast cancer death: A case-referent study Breast 2014;23. 10.1016/j.breast.2014.03.002.
- The effect of population-based mammography screening in Dutch municipalities on breast cancer mortality: 20 years of follow-up: The effect of population-based mammography screening on breast cancer mortality.Int J Cancer. 2017; 141https://doi.org/10.1002/ijc.30754
- Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography.J Natl Cancer Inst. 2014; (106:dju092)
- Positive predictive value of specific mammographic findings according to reader and patient variables.Radiology. 2009; 250: 648-657
- Breast Density as a Predictor of Mammographic Detection: Comparison of Interval- and Screen-Detected Cancers.JNCI J Natl Cancer Inst. 2000; 92: 1081-1087
- Using Volumetric Breast Density to Quantify the Potential Masking Risk of Mammographic Density.AJR Am J Roentgenol. 2016; 208: 1-6https://doi.org/10.2214/AJR.16.16489
- Triple-Modality Screening Trial for Familial Breast Cancer Underlines the Importance of Magnetic Resonance Imaging and Questions the Role of Mammography and Ultrasound Regardless of Patient Mutation Status, Age, and Breast Density.J Clin Oncol Off J Am Soc Clin Oncol. 2015; 33https://doi.org/10.1200/JCO.2014.56.8626
- MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study.Lancet. 2007; 370: 485-492https://doi.org/10.1016/S0140-6736(07)61232-X
- Value of tissue harmonic imaging (THI) and contrast harmonic imaging (CHI) in detection and characterisation of breast tumours.Eur Radiol. 2007; 17: 1-10https://doi.org/10.1007/s00330-006-0325-z
- Combined Screening With Ultrasound and Mammography vs Mammography Alone in Women at Elevated Risk of Breast Cancer.JAMA. 2008; 299: 2151https://doi.org/10.1001/jama.299.18.2151
- Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study.BMJ. 2017; 359j5224https://doi.org/10.1136/bmj.j5224
- Angiogenesis in cancer and other disease.Nature. 2000; 407: 249-257https://doi.org/10.1038/35025220
H. Lusic M. Grinstaff X-Ray Computed Tomography Contrast Agents Chem Rev 2012;113. 10.1021/cr200358s.
- Digital breast tomosynthesis versus digital mammography: A clinical performance study.Eur Radiol. 2010; https://doi.org/10.1007/s00330-009-1699-5
- Comparison of Digital Mammography Alone and Digital Mammography Plus Tomosynthesis in a Population-based Screening Program.Radiology. 2013; 267: 47-56https://doi.org/10.1148/radiol.12121373
- Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study.Lancet Oncol. 2013; 14: 583-589https://doi.org/10.1016/S1470-2045(13)70134-7
- X-ray phase-contrast imaging of the breast - Advances towards clinical implementation.Br J Radiol. 2014; 87: 20130606https://doi.org/10.1259/bjr.20130606
- Mammography with Synchrotron Radiation: Phase-Detection Techniques.Radiology. 2000; 215: 286-293https://doi.org/10.1148/radiology.215.1.r00ap10286
- The mammography project at the SYRMEP beamline.Eur J Radiol. 2008; https://doi.org/10.1016/j.ejrad.2008.04.038
- Mammography with Synchrotron Radiation: First Clinical Experience with Phase-Detection Technique.Radiology. 2011; 259: 684-694
- Clinical study in phase- contrast mammography: image-quality analysis.Philos Trans Roy Soc, A. 2014; 372: 20130025
- X-ray phase contrast imaging: From synchrotrons to conventional sources.Riv Nuovo Cim Soc Ital Fis. 2014; 37: 467-508
Eggl E, Schleede S, Bech M, Achterhold K, Grandl S, Sztrókay A, et al. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source. EPL (Europhysics Lett 2016;116:68003. https://doi.org/10.1209/0295-5075/116/68003.
- Dose-compatible grating-based phase-contrast mammography on mastectomy specimens using a compact synchrotron source.Sci Rep. 2018; 8: 15700https://doi.org/10.1038/s41598-018-33628-z
F. Pfeiffer T. Weitkamp O. Bunk C. David Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources Nat Phys 2006;2. 10.1038/nphys265.
- Hard-X-ray dark-field imaging using a grating interferometer.Nat Mater. 2008; 7: 134-137https://doi.org/10.1038/nmat2096
- Mammographic Appearance of Nonpalpable Breast Cancer Reflects Pathologic Characteristics.Ann Surg. 2002; 235: 246-251https://doi.org/10.1097/00000658-200202000-00013
- Pathological and Biological Differences Between Screen-Detected and Interval Ductal Carcinoma in situ of the Breast.Ann Surg Oncol. 2007; 14: 2097-2104https://doi.org/10.1245/s10434-007-9395-7
- Mammographic Predictors of the Presence and Size of Invasive Carcinomas Associated With Malignant Microcalcification Lesions Without a Mass.Am J Roentgenol. 2003; 181: 1679-1684https://doi.org/10.2214/ajr.181.6.1811679
- Non-invasive classification of microcalcifications with phase-contrast X-ray mammography.Nat Commun. 2014; 5: 3797https://doi.org/10.1038/ncomms4797
- Correspondence: Quantitative evaluation of X-ray dark-field images for microcalcification analysis in mammography.Nat Commun. 2016; 7: 10863https://doi.org/10.1038/ncomms10863
- Correspondence: Reply to ‘Quantitative evaluation of X-ray dark-field images for microcalcification analysis in mammography’.Nat Commun. 2016; 7: 10868https://doi.org/10.1038/ncomms10868
- Discrimination analysis of breast calcifications using x-ray dark-field radiography.Med Phys. 2020; 47: 1813-1826https://doi.org/10.1002/mp.14043
- Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography.Sci Rep. 2016; 6: 36991https://doi.org/10.1038/srep36991
- Can grating interferometry-based mammography discriminate benign from malignant microcalcifications in fresh biopsy samples?.Eur J Radiol. 2020; 129109077https://doi.org/10.1016/j.ejrad.2020.109077
T.H. Jensen M. Bech O. Bunk T. Donath C. David Feidenhans’l R, et al. Directional x-ray dark-field imaging Phys Med Biol 2010;55:3317–23. 10.1088/0031-9155/55/12/004.
- Bi-Directional X-Ray Phase-Contrast Mammography.PLoS ONE. 2014; 9e93502https://doi.org/10.1371/journal.pone.0093502
- Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex-vivo study.Eur J Radiol. 2015; 25: 3659-3668
- A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.Invest Radiol. 2014; 49: 131-137
- European guidelines for quality assurance in breast cancer screening and diagnosis.Ann Oncol. 2008; 19: 614-622
- Toward Clinically Compatible Phase-Contrast Mammography.PLoS ONE. 2015; 10e0130776
- Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies.Med Phys. 2015; 42: 1959https://doi.org/10.1118/1.4914420
- Low-dose, phase-contrast mammography with high signal-to-noise ratio.Biomed Opt Express. 2016; 7: 381https://doi.org/10.1364/BOE.7.000381
- Large area gratings by x-ray LIGA dynamic exposure for x-ray phase-contrast imaging.J Micro/Nanolithography, MEMS, MOEMS. 2017; 16013501https://doi.org/10.1117/1.JMM.16.1.013501
- Large field-of-view tiled grating structures for X-ray phase-contrast imaging.Rev Sci Instrum. 2017; 88015104https://doi.org/10.1063/1.4973632
- Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography.Opt Express. 2017; 25: 6349https://doi.org/10.1364/OE.25.006349
- Towards clinical grating-interferometry mammography.Eur Radiol. 2020; 30: 1419-1425https://doi.org/10.1007/s00330-019-06362-x
- Computed tomography of the breast. A preliminary report.Radiology. 1977; 124: 827-829
Chang CHJ, L Sibala J, L Fritz S, H Gallagher J, J Dwyer S, Templeton AW. Computed tomographic evaluation of the breast. AJR Am J Roentgenol 1978;131:459–64. https://doi.org/10.2214/ajr.131.3.459.
H. Joseph Chang MD C, L. Sibala MD J, L. Fritz PhD S, J. Dwyer III PhD S, W. Templeton MD A, Lin MD F, et al. Computed tomography in detection and diagnosis of breast cancer Cancer 1980;46:939–46. 10.1002/1097-0142(19800815)46:4+<939::AID-CNCR2820461315>3.0.CO;2-L.
M. Boone J, Nelson T, K. Lindfors K, Seibert J. Dedicated Breast CT: Radiation Dose and Image Quality Evaluation Radiology 2002;221:657–67. 10.1148/radiol.2213010334.
M. Boone J, Kwan A, Yang K, Burkett G, K Lindfors K, Nelson T. Computed Tomography for Imaging the Breast J Mammary Gland Biol Neoplasia 2006;11:103–11. 10.1007/s10911-006-9017-1.
- Dedicated Breast CT: Initial Clinical Experience.Radiology. 2008; 246: 725-733https://doi.org/10.1148/radiol.2463070410
D. Prionas N, K Lindfors K, Ray S, Huang S, A Beckett L, Monsky W, et al. Contrast-enhanced Dedicated Breast CT: Initial Clinical Experience Radiology 2010;256:714–23. 10.1148/radiol.10092311.
- Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging.J Instrum. 2016; 11: P01007https://doi.org/10.1088/1748-0221/11/01/P01007
- High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations.Eur Radiol. 2011; 22: 1-8
- Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast.Eur Radiol. 2016; 27: 1081-1086
(AB-CT) 2020.
- Dedicated Breast Computed Tomography With a Photon-Counting Detector: Initial Results of Clinical In Vivo Imaging.Invest Radiol. 2019; https://doi.org/10.1097/RLI.0000000000000552
- Dedicated breast computed tomography: Basic aspects.Med Phys. 2015; 42: 2786-2804https://doi.org/10.1118/1.4919441
- Visualizing Typical Features of Breast Fibroadenomas Using Phase-Contrast CT: An Ex-Vivo Study.PLoS ONE. 2014; 9e97101https://doi.org/10.1371/journal.pone.0097101
- Assessment of intraductal carcinoma in situ (DCIS) using grating-based X-ray phase-contrast CT at conventional X-ray sources: An experimental ex-vivo study.PLoS ONE. 2019; 14e0210291https://doi.org/10.1371/journal.pone.0210291
- Quantitative Three-Dimensional Imaging of Lipid, Protein, and Water Contents via X-Ray Phase-Contrast Tomography.PLoS ONE. 2016; 11e0151889https://doi.org/10.1371/journal.pone.0151889
- Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study.Sci Rep. 2019; 9: 17778https://doi.org/10.1038/s41598-019-54131-z
- Quantitative characterization of breast tissues with dedicated CT imaging.Phys Med Biol. 2019; https://doi.org/10.1088/1361-6560/ab2c29
- Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra.J Synchrotron Radiat. 2019; 26: 1343-1353https://doi.org/10.1107/S1600577519005502
Longo R, Arfelli F, Donato S, Bonazza D, Brombal L, Contillo A, et al. Lesion visibility in phase-contrast breast CT: comparison with histological images. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th Int. Work. Breast Imaging, SPIE; 2020, p. 68. https://doi.org/10.1117/12.2564202.
- Optimization of the energy for Breast monochromatic absorption X-ray Computed Tomography.Sci Rep. 2019; 9: 13135https://doi.org/10.1038/s41598-019-49351-2
L. Brombal S. Donato D. Dreossi F. Arfelli D. Bonazza A. Contillo et al. Phase-contrast breast CT: the effect of propagation distance Phys Med Biol 2018;63:24NT03. 10.1088/1361-6560/aaf2e1.
- Monochromatic breast computed tomography with synchrotron radiation: phase-contrast and phase-retrieved image comparison and full-volume reconstruction.J Med Imaging. 2018; 6: 1https://doi.org/10.1117/1.JMI.6.3.031402
Brombal L, Golosio B, Arfelli F, Contillo A, Delogu P, Donato S, et al. Monochromatic breast CT: absorption and phase-retrieved images. In: Chen G-H, Lo JY, Gilat Schmidt T, editors. Med. Imaging 2018 Phys. Med. Imaging, SPIE; 2018, p. 71. https://doi.org/10.1117/12.2293088.
- Free propagation phase-contrast breast CT provides higher image quality than cone-beam breast-CT at low radiation doses: a feasibility study on human mastectomies.Sci Rep. 2019; 9: 13762https://doi.org/10.1038/s41598-019-50075-6
- Toward Improving Breast Cancer Imaging: Radiological Assessment of Propagation-Based Phase-Contrast CT Technology.Acad Radiol. 2019; 26: e79-e89https://doi.org/10.1016/j.acra.2018.07.008
- Comparison of propagation-based CT using synchrotron radiation and conventional cone-beam CT for breast imaging.Eur Radiol. 2020; https://doi.org/10.1007/s00330-019-06567-0
- Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation.Med Phys. 2019; 46: 5478-5487https://doi.org/10.1002/mp.13842
- Propagation-Based Phase-Contrast CT of the Breast Demonstrates Higher Quality Than Conventional Absorption-Based CT Even at Lower Radiation Dose.Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2020.01.009
- Advantages of breast cancer visualization and characterization using synchrotron radiation phase-contrast tomography.J Synchrotron Radiat. 2018; 25: 1460-1466https://doi.org/10.1107/S1600577518010172
GratXray. GratXray - Home 2020. https://www.gratxray.com/.
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy