Highlights
- •Drawback of conventional X-ray radiography overcome by using X-ray phase contrast.
- •Effective for materials consisting of low-Z element, such as polymers and biological soft tissues.
- •Quantitative images mapping refraction and scattering in addition to attenuation.
- •Development initially at synchrotron radiation facilities expanding at hospitals.
- •Apparatus using grating interferometry in operation for clinical studies with patients in hospitals.
Abstract
Keywords
1. Introduction
2. What is X-ray phase imaging?
2.1 Significance of using X-ray phase information
is measured in conventional X-ray radiography, where I0 and I are the X-ray intensities in front of and behind the object and μ is the linear absorption coefficient. Strictly speaking, the linear absorption coefficient is a function of position μ (x, y, z) and Eq. (1) is rewritten as
where it is assumed that X-rays penetrate in the z direction. By using β and X-ray wavelength λ,
where Nk, Zk, f’k, and μak are the atomic density, atomic number, real part of the atomic scattering factor, and the atomic absorption coefficient of element k existing in the object. μak has the dimension of area and corresponds to the interaction cross section. Note that the interactions relating to X-ray attenuation are the photoelectron effect, Thomson scattering, and Compton scattering, and μak is the quantity defined by summing the effects of the three interactions. In Eq. (5), pk () is used as the interaction cross section of the phase shift [

Material | 30 keV | 60 keV | ||||
---|---|---|---|---|---|---|
δ | β | δ/β | δ | β | δ/β | |
Water | 2.56 × 10−7 | 1.06 × 10−10 | 2.41 × 103 | 6.42 × 10−8 | 2.93 × 10−11 | 2.19 × 103 |
Polyimide | 3.38 × 10−7 | 1.15 × 10−10 | 2.34 × 103 | 9.70 × 10−8 | 5.01 × 10−11 | 1.94 × 103 |
Polypropylene | 2.37 × 10−7 | 7.01 × 10−11 | 3.38 × 103 | 5.95 × 10−8 | 2.39 × 10−11 | 2.48 × 103 |
Teflon | 4.87 × 10−7 | 2.46 × 10−10 | 1.98 × 103 | 1.22 × 10−7 | 7.09 × 10−11 | 1.72 × 103 |
Ti | 9.68 × 10−7 | 7.08 × 10−9 | 1.37 × 102 | 2.41 × 10−7 | 5.60 × 10−10 | 4.30 × 102 |
Fe | 1.70 × 10−6 | 2.01 × 10−8 | 8.46 × 101 | 4.22 × 10−7 | 1.54 × 10−9 | 2.74 × 10−2 |
where is the gradient operator in the x-y plane. The value of φ, which strictly depends on the shape of the object, is in the order of microradians or less. In conventional X-ray radiography, therefore, it is reasonably assumed that X-rays penetrate straight in objects. In X-ray phase-contrast techniques, however, this slight change in propagation direction is used as a signal.
2.2 X-ray phase-imaging techniques

2.2.1 Method using two-beam interference
where A(x,y) and B(x,y) are the average intensity and fringe amplitude, respectively. It is not technically easy to fabricate an ideal interferometer without deformation and a built-in moiré pattern is normally observed, as shown in the image of a polymer sphere (Fig. 2(a)), even in the absence of an object. Such an effect is expressed by Δ(x,y) in Eq. (8).
2.2.1.1 Fringe-scanning method
where the stepwise change in the phase difference is denoted by k, and M is an integer equal to or larger than 3. Then, by acquiring multiple interference patterns described by Eq. (9), Φ (x,y) can be extracted by
where arg[ ] implies the extraction of the argument. Note that Δ(x,y) can be determined without an object (that is, Φ (x,y) = 0) using the same procedure. Thanks to this phase-imaging procedure, we can avoid the difficulty of preparing a perfect interferometer. On the other hand, an absorption image is obtained by averaging Ik(x, y) (k = 1, 2, ···, M).
2.2.1.2 Fourier-transform method
where
and the asterisk denotes the complex conjugate. The one-dimensional Fourier transform of Eq. (11)’ yields
where subscript F indicates the Fourier transform of each term in Eq. (11)’. The three terms on the right-hand side of Eq. (13) are separated by f0 from each other along frequency axis f. If the sizes of the structures involved in the object are sufficiently larger than 1/f0, the overlap of the three terms on the f axis is ignored, and CF(f -f0, y) can be extracted. Next, CF(f, y) is obtained by shifting CF(f -f0, y) by f0 to the origin. The inverse Fourier transform of CF(f, y) with respect to f yields C(x,y). Then, Φ (x,y) + Δ(x,y) is obtained by calculating the argument of C(x,y). The determination of Δ(x,y) is feasible without an object. An absorption image is obtained by the inverse Fourier transform of AF(f, y).
2.2.2 Method using crystal diffraction enhancement
2.2.3 Propagation-based method
and, with a single-distance measurement, the phase shift just behind an object can be calculated approximately by
where and denote the forward and backward Fourier transforms and u and v are the Fourier conjugate coordinates of x and y, respectively [
2.2.4 Grating-based method
where are calculated from the products of the Fourier coefficients of the self-image of G1 and the intensity transmission function of G2, and φx(x, y) is the x component of φ (x, y) given in Eq. (7). d is the period of G2, and χ is the displacement of one of the gratings against the other in the x direction. Δ(x,y) is introduced in Eq. (19), as it is in Eq. (8), to express the imperfection in grating fabrication and alignment.
where is the image when χ = kd/M. By displacing G1 instead of G2, φx(x, y) can be determined in the same manner. More details on the image mapping refraction in addition to those mapping absorption and scattering are described later in Section 2.4.

- Berujon S.
- Wang H.
- Sawhney K.
2.3 X-ray phase tomography
- Momose A.
- Shinohara M.
- Yamashita T.
- Tawa H.
- Takeda M.
- Sasaki N.
- Takaya T.
- Toh R.
- Takeuchi A.
- Ohigashi T.
- Shinohara K.
- Kawashima S.
- Yokoyama M.
- Hirata K.-I.
- Momose A.

- Shinohara M.
- Yamashita T.
- Tawa H.
- Takeda M.
- Sasaki N.
- Takaya T.
- Toh R.
- Takeuchi A.
- Ohigashi T.
- Shinohara K.
- Kawashima S.
- Yokoyama M.
- Hirata K.-I.
- Momose A.
2.4 Scattering signal retrieval

where ω is the rotation angle about the optical axis. describes the anisotropy of the microstructures to be measured. By setting ω = π k/M (k = 1, 2, ···, M),
is used for the analysis using the fringe-scanning method. V0(x, y) is the average visibility and V1(x, y) indicates the degree of anisotropy. This treatment is known as ‘vector radiography’ [
3. Developments for clinical uses
3.1 Mammography
3.2 Diagnosis of arthritis

- Yoshioka H.
- Kadono Y.
- Kim Y.T.
- Oda H.
- Maruyama T.
- Akiyama Y.
- Mimura T.
- Tanaka J.
- Niitsu M.
- Hoshino Y.
- Kiyohara J.
- Nishino S.
- Makifuchi C.
- Takahashi A.
- Shinden Y.
- Matsusaka N.
- Kido K.
- Momose A.
3.3 Diagnosis of lung diseases
- Bech M.
- Tapfer A.
- Velroyen A.
- Yaroshenko A.
- Pauwels B.
- Hostens J.
- Bruyndonckx P.
- Sasov A.
- Pfeiffer F.
- Schleede S.
- Meinel F.G.
- Bech M.
- Herzen J.
- Achterhold K.
- Potdevin G.
- Malecki A.
- Adam-Neumair S.
- Thieme S.F.
- Bamberg F.
- Nikolaou K.
- Bohla A.
- Yildirim A.O.
- Loewen R.
- Gifford M.
- Ruth R.
- Eickelberg O.
- Reiser M.
- Pfeiffer F.
- Yaroshenko A.
- Hellbach K.
- Yildirim A.Ö.
- Conlon T.M.
- Fernandez I.E.
- Bech M.
- Velroyen A.
- Meinel F.G.
- Auweter S.
- Reiser M.
- Eickelberg O.
- Pfeiffer F.
- Bachche S.
- Nonoguchi M.
- Kato K.
- Kageyama M.
- Koike T.
- Kuribayashi M.
- Momose A.
- Gromann L.B.
- De Marco F.
- Willer K.
- Noël P.B.
- Scherer K.
- Renger B.
- Gleich B.
- Achterhold K.
- Fingerle A.A.
- Muenzel D.
- Auweter S.
- Hellbach K.
- Reiser M.
- Baehr A.
- Dmochewitz M.
- Schroeter T.J.
- Koch F.J.
- Meyer P.
- Kunka D.
- Mohr J.
- Yaroshenko A.
- Maack H.-I.
- Pralow T.
- van der Heijden H.
- Proksa R.
- Koehler T.
- Wieberneit N.
- Rindt K.
- Rummeny E.J.
- Pfeiffer F.
- Herzen J.
Willer K, Fingerle AA, Gromann LB, De Marco F, Herzen J, Achterhold K, Gleich B, Muenzel D, Scherer K, Renz M, Renger B, Kopp F, Kriner F, Fischer F, Braun C, Auweter S, Hellbach K, Reiser MF, Schroeter T, Mohr J, Yaroshenko A, Maack HI, Pralow T, van der Heijden H, Proksa R, Koehler T, Wieberneit N, Rindt K, Rummeny EJ, Pfeiffer F, Noël PB. X-ray dark-field imaging of the human lung—A feasibility study on a deceased body. PLoS One 2018;13:e0204565.
- Fingerle A.A.
- De Marco F.
- Andrejewski J.
- Willer K.
- Gromann L.B.
- Noichl W.
- Kriner F.
- Fischer F.
- Braun C.
- Maack H.-I.
- Pralow T.
- Koehler T.
- Noël P.B.
- Meurer F.
- Deniffel D.
- Sauter A.P.
- Haller B.
- Pfeiffer D.
- Rummeny E.J.
- Herzen J.
- Pfeiffer F.
- Gromann L.B.
- De Marco F.
- Willer K.
- Noël P.B.
- Scherer K.
- Renger B.
- Gleich B.
- Achterhold K.
- Fingerle A.A.
- Muenzel D.
- Auweter S.
- Hellbach K.
- Reiser M.
- Baehr A.
- Dmochewitz M.
- Schroeter T.J.
- Koch F.J.
- Meyer P.
- Kunka D.
- Mohr J.
- Yaroshenko A.
- Maack H.-I.
- Pralow T.
- van der Heijden H.
- Proksa R.
- Koehler T.
- Wieberneit N.
- Rindt K.
- Rummeny E.J.
- Pfeiffer F.
- Herzen J.
Willer K, Fingerle AA, Gromann LB, De Marco F, Herzen J, Achterhold K, Gleich B, Muenzel D, Scherer K, Renz M, Renger B, Kopp F, Kriner F, Fischer F, Braun C, Auweter S, Hellbach K, Reiser MF, Schroeter T, Mohr J, Yaroshenko A, Maack HI, Pralow T, van der Heijden H, Proksa R, Koehler T, Wieberneit N, Rindt K, Rummeny EJ, Pfeiffer F, Noël PB. X-ray dark-field imaging of the human lung—A feasibility study on a deceased body. PLoS One 2018;13:e0204565.
4. Future prospects
- Wang Z.
- Hauser N.
- Singer G.
- Trippel M.
- Kubik-Huch R.A.
- Schneider C.W.
- Stampanoni M.
Declaration of Competing Interest
References
- Über eine neue Art von Strahlen.Ann Phys. 1895; 300: 12-17
- Interferenz-Erscheinungen bei Röntgenstrahlen.Bayer Akad Wiss München. 1912; : 303-322
- Inflection theory of the cutting method and its improved form, the phase contrast method.Physica. 1934; 1: 689-704
- Phase‐Sensitive X‐Ray Imaging.Phys Today. 2000; 53: 23-26https://doi.org/10.1063/1.1292471
- Recent Advances in X-ray Phase Imaging.Jpn. J. Appl. Phys. 2005; 44: 6355-6367https://doi.org/10.1143/JJAP.44.6355
- Coherent methods in the X-ray sciences.Adv Phys. 2010; 59: 1-99https://doi.org/10.1080/00018730903270926
- X-ray phase-contrast imaging: from pre-clinical applications towards clinics.Phys. Med. Biol. 2013; 58: R1-R35https://doi.org/10.1088/0031-9155/58/1/R1
- Computerized transverse axial scanning (tomography): Part I.Description of system. Br J Radiol. 1973; 46: 1016-1022
- Mammography with Synchrotron Radiation: First Clinical Experience with Phase-Detection Technique.Radiology. 2011; 259: 684-694https://doi.org/10.1148/radiol.11100745
- Demonstration of X-Ray Talbot Interferometry.Jpn. J. Appl. Phys. 2003; 42: L866-L868https://doi.org/10.1143/JJAP.42.L866
- Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources.Nature Phys. 2006; 2: 258-261https://doi.org/10.1038/nphys265
- X-ray phase imaging: from synchrotron to hospital.Phil. Trans. R. Soc. A. 2014; 372: 20130023https://doi.org/10.1098/rsta.2013.0023
Willer K, Fingerle A, Noichl W, De Marco F, Frank M, Urban T, Schick R, Gustschin A, Gleich B, Koehler T, Yaroshenko A, Pralow T, Zimmermann G, Renger B, Sauter A, Pfeiffer D, Rummeny E, Herzen J, Pfeiffer F. Dark-field chest X-rays – First patient trials. submitted.
- Phase-contrast radiographs of nonstained rat cerebellar specimen.Med. Phys. 1995; 22: 375-379https://doi.org/10.1118/1.597472
X-Ray interactions with matter. Available online: http://henke.lbl.gov/optical_constants/.
- AN X‐RAY INTERFEROMETER.Appl. Phys. Lett. 1965; 6: 155-156https://doi.org/10.1063/1.1754212
- Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses.Appl. Opt. 1974; 13: 2693https://doi.org/10.1364/AO.13.002693
- Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry.J. Opt. Soc. Am. 1982; 72: 156https://doi.org/10.1364/JOSA.72.000156
- Phase–contrast X–ray computed tomography for observing biological soft tissues.Nat Med. 1996; 2: 473-475https://doi.org/10.1038/nm0496-473
- Theory, algorithms, and software.John Willey & Sons, New York1998
- Phase-contrast imaging of weakly absorbing materials using hard X-rays.Nature. 1995; 373: 595-598https://doi.org/10.1038/373595a0
- X-ray plane-wave topography observation of the phase contrast from a non-crystalline object.J. Phys. D: Appl. Phys. 1995; 28: 2314-2317https://doi.org/10.1088/0022-3727/28/11/012
- Diffraction enhanced x-ray imaging.Phys. Med. Biol. 1997; 42: 2015-2025https://doi.org/10.1088/0031-9155/42/11/001
Authier A, Dynamical theory of X-ray diffraction. Oxford, New York; 2001.
- On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation.Rev Sci Instrum. 1995; 66: 5486-5492https://doi.org/10.1063/1.1146073
- Phase-contrast imaging using polychromatic hard X-rays.Nature. 1996; 384: 335-338https://doi.org/10.1038/384335a0
- Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays.Appl. Phys. Lett. 1999; 75: 2912-2914https://doi.org/10.1063/1.125225
- Deterministic phase retrieval: a Green’s function solution.J. Opt. Soc. Am. 1983; 73: 1434https://doi.org/10.1364/JOSA.73.001434
- Hard x-ray quantitative non-interferometric phase-contrast microscopy.J. Phys. D: Appl. Phys. 1999; 32: 563-567https://doi.org/10.1088/0022-3727/32/5/010
- Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object.J Microsc. 2002; 206: 33-40https://doi.org/10.1046/j.1365-2818.2002.01010.x
- Facts relating to optical science.Phil Mag. 1836; 9: 401-407
- Theory of Fresnel Images I Plane Periodic Objects in Monochromatic Light*.J. Opt. Soc. Am. 1965; 55: 373https://doi.org/10.1364/JOSA.55.000373
- On Fresnel Diffraction by One-dimensional Periodic Objects, with Application to Structure Determination of Phase Objects.Optica Acta: International Journal of Optics. 1971; 18: 677-682https://doi.org/10.1080/713818491
- X-Ray Phase Imaging with Single Phase Grating.Jpn. J. Appl. Phys. 2007; 46: L89-L91https://doi.org/10.1143/JJAP.46.L89
- High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation.Opt. Express. 2009; 17: 12540https://doi.org/10.1364/OE.17.012540.m005
- An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field.Med. Phys. 2001; 28: 1610-1619https://doi.org/10.1118/1.1388219
- A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources.Appl. Phys. Lett. 2007; 91: 074106https://doi.org/10.1063/1.2772193
- X-ray phase imaging with a paper analyzer.Appl. Phys. Lett. 2012; 100: 124102https://doi.org/10.1063/1.3694918.1
- X-ray multimodal imaging using a random-phase object.Phys. Rev. A. 2012; 86https://doi.org/10.1103/PhysRevA.86.063813
- Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer.Nucl Instrum Methods Phys Res, Sect A. 1995; 352: 622-628https://doi.org/10.1016/0168-9002(95)90017-9
- Three-dimensional beam-deflection optical tomography of a supersonic jet.Appl. Opt. 1988; 27: 5202https://doi.org/10.1364/AO.27.005202
- Phase-sensitive imaging and phase tomography using X-ray interferometers.Opt. Express. 2003; 11: 2303https://doi.org/10.1364/OE.11.002303
- Imaging renal structures by X-ray phase-contrast microtomography.Kidney Int. 2009; 75: 945-951https://doi.org/10.1038/ki.2009.42
- Phase Tomography by X-ray Talbot Interferometry for Biological Imaging.Jpn. J. Appl. Phys. 2006; 45: 5254-5262https://doi.org/10.1143/JJAP.45.5254
- Atherosclerotic plaque imaging using phase-contrast X-ray computed tomography.American Journal of Physiology-Heart and Circulatory Physiology. 2008; 294: H1094-H1100https://doi.org/10.1152/ajpheart.01149.2007
- Four-dimensional X-ray phase tomography with Talbot interferometer and white synchrotron light.Proc SPIE. 2010; 7804780405
- Three-Dimensional Observation of Polymer Blend by X-ray Phase Tomography.Macromolecules. 2005; 38: 7197-7200https://doi.org/10.1021/ma050917o
- Hard-X-ray dark-field imaging using a grating interferometer.Nature Mater. 2008; 7: 134-137https://doi.org/10.1038/nmat2096
- On the origin of visibility contrast in x-ray Talbot interferometry.Opt. Express. 2010; 18: 16890https://doi.org/10.1364/OE.18.016890
- Coherence-contrast x-ray imaging based on x-ray interferometry.Appl. Opt. 2005; 44: 3258https://doi.org/10.1364/AO.44.003258
- Multiple-image radiography.Phys. Med. Biol. 2003; 48: 3875-3895https://doi.org/10.1088/0031-9155/48/23/006
- Quantitative x-ray dark-field computed tomography.Phys. Med. Biol. 2010; 55: 5529-5539https://doi.org/10.1088/0031-9155/55/18/017
- Directional x-ray dark-field imaging.Phys. Med. Biol. 2010; 55: 3317-3323https://doi.org/10.1088/0031-9155/55/12/004
- X-ray vector radiography for bone micro-architecture diagnostics.Phys. Med. Biol. 2012; 57: 3451-3461https://doi.org/10.1088/0031-9155/57/11/3451
- The mammography project at the SYRMEP beamline.Eur J Radiol. 2008; 68: S58-S62https://doi.org/10.1016/j.ejrad.2008.04.038
- The First Trial of Phase Contrast Imaging for Digital Full-Field Mammography Using a Practical Molybdenum X-Ray Tube:.Invest Radiol. 2005; 40: 385-396https://doi.org/10.1097/01.rli.0000165575.43381.48
- Fabrication of diffraction grating for X-ray Talbot interferometer.Microsyst Technol. 2007; 13: 543-546https://doi.org/10.1007/s00542-006-0226-8
- High aspect ratio gratings for X-ray phase contrast imaging.AIP Conf Proc. 2012; 1466: 41-50
- Application of X-ray grating interferometry for the imaging of joint structures.Anat Sci Int. 2014; 89: 95-100https://doi.org/10.1007/s12565-013-0204-z
- Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry.Zeitschrift für Medizinische Physik. 2013; 23: 222-227https://doi.org/10.1016/j.zemedi.2012.11.004
- Imaging evaluation of the cartilage in rheumatoid arthritis patients with an x-ray phase imaging apparatus based on Talbot-Lau interferometry.Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-63155-9
- In-vivo dark-field and phase-contrast x-ray imaging.Sci Rep. 2013; 3https://doi.org/10.1038/srep03209
- Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source.Proc Natl Acad Sci. 2012; 109: 17880-17885https://doi.org/10.1073/pnas.1206684109
- In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema:.Invest Radiol. 2015; 50: 430-435https://doi.org/10.1097/RLI.0000000000000147
- Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography.Sci Rep. 2015; 5https://doi.org/10.1038/srep17492
- Grating interferometer based scanning setup for hard x-ray phase contrast imaging.Rev. Sci. Instrum. 2007; 78: 043710https://doi.org/10.1063/1.2723064
- Tilted-grating approach for scanning-mode X-ray phase contrast imaging.Opt. Express. 2014; 22: 15447https://doi.org/10.1364/OE.22.015447
- Slit-scanning differential x-ray phase-contrast mammography: Proof-of-concept experimental studies: Slit-scanning differential x-ray phase-contrast mammography.Med. Phys. 2015; 42: 1959-1965https://doi.org/10.1118/1.4914420
- Laboratory-based X-ray phase-imaging scanner using Talbot-Lau interferometer for non-destructive testing.Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-07032-y
- In-vivo X-ray Dark-Field Chest Radiography of a Pig.Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-05101-w
Willer K, Fingerle AA, Gromann LB, De Marco F, Herzen J, Achterhold K, Gleich B, Muenzel D, Scherer K, Renz M, Renger B, Kopp F, Kriner F, Fischer F, Braun C, Auweter S, Hellbach K, Reiser MF, Schroeter T, Mohr J, Yaroshenko A, Maack HI, Pralow T, van der Heijden H, Proksa R, Koehler T, Wieberneit N, Rindt K, Rummeny EJ, Pfeiffer F, Noël PB. X-ray dark-field imaging of the human lung—A feasibility study on a deceased body. PLoS One 2018;13:e0204565.
- Imaging features in post-mortem x-ray dark-field chest radiographs and correlation with conventional x-ray and CT.Eur Radiol Exp. 2019; 3https://doi.org/10.1186/s41747-019-0104-7
- The First Analysis and Clinical Evaluation of Native Breast Tissue Using Differential Phase-Contrast Mammography:.Invest Radiol. 2011; 46: 801-806https://doi.org/10.1097/RLI.0b013e31822a585f
- Non-invasive classification of microcalcifications with phase-contrast X-ray mammography.Nat Commun. 2014; 5https://doi.org/10.1038/ncomms4797
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy