Highlights
- •EURADOS WG9 characterization of several passive detector systems in Proton Therapy.
- •Unique study comparing luminescence detectors and alanine from three institutes.
- •Alanine detectors demonstrated the lowest linear energy transfer (LET) dependence.
- •Alanine detectors show the best dosimetric properties for implementation in auditing.
- •Luminescence detectors require more extensive calibrations for mail auditing.
Abstract
Keywords
1. Introduction
2. Materials and methods
2.1 Dosimeters and dosimetry systems
2.1.1 Electron paramagnetic resonance
2.1.1.1 Bruker ELEXSYS spectrometer
2.1.1.2 Bruker EMXmicro spectrometer
2.1.1.3 Bruker ESP 300 spectrometer
2.1.1.4 Radiophotoluminescence dosimetry
Technique | Detector | Detector dimensions (ф x thickness) [mm] | Reader | Calibration | Details readout protocol | Institute |
---|---|---|---|---|---|---|
TLD | MCP-n | 4.5 × 0.9 | Harshaw 5500 | Co-60 (Kair) | 2˚C/s from 50 °C to 255 °C (without pre-heating) | SCK CEN |
MTS-n | 4.5 × 0.9 | Lexyg Smart | Co-60 (Dw) | 10˚C/s from 20 °C to 300 °C (10 min pre-heating at 100 °C) | IFJ | |
EPR | Alanine | 4.8 × 3 | Bruker ESP 300 spectrometer | Proton (Dw)* | Single pellet measured acquiring 5 spectra, after subsequent rotation steps (ca. 70°) | IFJ |
Alanine | 4.8 × 3 | Bruker ELEXSYS spectrometer | Co-60 (Dw) Proton (Dw)* | 3 alanine pellets measured simultaneously and measured 3 times varying the position of the pellets in the stack | ISS | |
Alanine | 4.8 × 2.7 | Bruker EMXmicro spectrometer | Co-60 (Dw) Proton (Dw)* | Single pellets measured acquiring 5 separate spectra after subsequent equal rotation steps | UH | |
RPL | GD-352M | Glass rod detector: 1.5 × 12 Holder: 4.3 × 14.5 | Dose Ace FGD-1000 | Co-60 (Kair) | Excitation of 6 s with a 345 nm pulsed laser (preheated for 30 min at 70 °C) | RBI |
OSL | Al2O3:C | 4.5 × 0.13 | In-house reader system | Co-60 (Kair) | Stimulation of 100 s with a 514 nm green laser without pre-heat) | SCK CEN |
2.2 Thermoluminescence dosimetry
2.2.1 MCP-n
2.2.2 MTS-n
2.3 Optically stimulated luminescence dosimetry
2.4 Dosimeter calibrations
2.5 Proton calibration
3. Dosimeter repeatability, reproducibility and batch reproducibility
4. Reference irradiation in Co-60 (TRS-398)
5. Pencil beam scanning irradiations

Range | Modulation | Definition | MCNPx LETf (keV/µm) | MCNPx LETd (keV/µm) | |
---|---|---|---|---|---|
Different modulation | 20 cm | 5 cm | R20M5 | 1.55 | 2.40 |
20 cm | 10 cm | R20M10 | 1.20 | 1.84 | |
20 cm | 15 cm | R20M15 | 1.01 | 1.59 | |
20 cm | 20 cm | R20M20 | 0.89 | 1.44 | |
Different range | 5 cm | 5 cm | R5M5 | 1.62 | 2.49 |
10 cm | 5 cm | R10M5 | 1.60 | 2.47 | |
15 cm | 5 cm | R15M5 | 1.58 | 2.45 | |
20 cm | 5 cm | R20M5 | 1.55 | 2.40 | |
25 cm | 5 cm | R25M5 | 1.54 | 2.41 |
5.1 Monte Carlo simulation
6. Results
6.1 Dosimeter repeatability, reproducibility and batch reproducibility
EPR | RPL-GD | TLD | OSL | ||||
---|---|---|---|---|---|---|---|
Ala (IFJ PAN) | Ala (ISS) | Ala (UH) | GD-352M | MCP-N | MTS-N | Al2O3:C | |
Dosimeter repeatability | 1.6% | 0.4% | 0.6% | 0.2% | |||
Dosimeter reproducibility | 2.4% | 1.8% | 2.4% | 4.9% | |||
Batch reproducibility | 2.6% | 0.9% | 0.5% | 3.2% | 1.9% | 1.4% | 4.4% |
6.2 Dosimeter response in reference fields
Alanine/EPR | |||
---|---|---|---|
IFJ PAN | ISS | UH | |
Calibration | Proton | Co-60 | Co-60 |
Measured to reference dose ratio | 1.008 | 1.003 | 1.005 |
Total relative uncertainty (%) | 2.2% | 0.5% | 0.4% |
6.3 Dosimeter response in pencil beam scanning
6.3.1 Uncertainties of dosimetry systems
Beam characteristics | IFJ - proton | ISS - Co-60 | ISS - Proton | UH - Co-60 | UH - Proton |
---|---|---|---|---|---|
Range and Modulation (cm) | Ratio between measured and TPS dose | ||||
R20M5 | 0.99 | 0.98 | 1.00 | 0.97 | 1.00 |
R20M10 | 0.99 | 0.99 | 1.00 | 0.98 | 1.01 |
R20M15 | 1.00 | 0.99 | 1.01 | 0.98 | 1.02 |
R20M20 | 1.00 | 0.99 | 1.00 | 0.99 | 1.02 |
R5M5 | 1.01 | 0.97 | 0.99 | 0.97 | 1.00 |
R10M5 | 1.00 | 0.98 | 0.99 | 0.97 | 1.01 |
R15M5 | 0.99 | 0.98 | 0.99 | 0.97 | 1.00 |
R20M5 | 0.99 | 0.98 | 0.99 | 0.97 | 1.01 |
R25M5 | 0.98 | 0.98 | 0.99 | 0.97 | 1.00 |
Range and Modulation (cm) | Total relative uncertainties on dose | ||||
R20M5 | 4.2% | 1.2% | 1.6% | 0.8% | 1.0% |
R20M10 | 4.2% | 1.2% | 1.6% | 0.8% | 1.0% |
R20M15 | 4.2% | 1.2% | 1.6% | 0.8% | 1.0% |
R20M20 | 4.2% | 1.2% | 1.6% | 0.8% | 1.0% |
R5M5 | 4.2% | 1.2% | 1.6% | 0.9% | 1.0% |
R10M5 | 4.2% | 1.2% | 1.6% | 0.8% | 1.0% |
R15M5 | 4.2% | 1.2% | 1.6% | 0.9% | 1.0% |
R20M5 | 4.2% | 1.2% | 1.6% | 0.9% | 1.0% |
R25M5 | 4.2% | 1.2% | 1.6% | 0.9% | 1.0% |
6.3.2 Alanine response in PT
6.3.3 Luminescence dosimetry response in PT
Beam characteristics | RPL | TL | OSL | |
---|---|---|---|---|
Range and Modulation (cm) | GD-352M | MCP-n | MTS-n | Luxel |
Ratio between measured and TPS dose | ||||
R20M5 | 0.81 | 0.76 | 1.06 | 0.95 |
R20M10 | 0.84 | 0.79 | 1.02 | 0.93 |
R20M15 | 0.84 | 0.82 | 1.05 | 0.95 |
R20M20 | 0.86 | 0.83 | 1.04 | 0.97 |
R5M5 | 0.80 | 0.73 | 1.11 | 0.87 |
R10M5 | 0.80 | 0.75 | 1.07 | 0.97 |
R15M5 | 0.80 | 0.76 | 1.07 | 0.97 |
R20M5 | 0.81 | 0.76 | 1.06 | 0.93 |
R25M5 | 0.81 | 0.76 | 1.07 | 0.91 |
Range and Modulation (cm) | Total relative uncertainties on dose | |||
R20M5 | 1.6% | 4.5% | 2.5% | 5.4% |
R20M10 | 1.8% | 4.4% | 3.0% | 7.2% |
R20M15 | 1.7% | 5.5% | 2.3% | 4.8% |
R20M20 | 1.7% | 6.0% | 2.4% | 4.3% |
R5M5 | 1.9% | 5.0% | 4.0% | 6.2% |
R10M5 | 1.8% | 4.5% | 2.9% | 6.3% |
R15M5 | 2.5% | 5.9% | 2.9% | 3.6% |
R20M5 | 2.0% | 5.2% | 2.5% | 5.5% |
R25M5 | 2.3% | 4.0% | 2.3% | 7.0% |
6.3.4 Dosimeter response as function of LETf



7. Discussion
7.1 Alanine-EPR dosimetry systems of 3 European institutes
7.2 Luminescent based dosimetry systems
7.3 Future plans
8. Conclusions
References
- 50 Years of the IAEA/WHO postal dose audit programme for radiotherapy: what can we learn from 13756 results?.Acta Oncol. 2020; 59: 495-502
IAEA, Comprehensive Audits of Radiotherapy Practices: A Tool for Quality Improvement. 2007, Vienna: International Atomic Energy Agency.
- The ESTRO-QUALity assurance network (EQUAL).Radiother Oncol. 2000; 55: 273-284
- Use of alanine for dosimetry intercomparisons among Italian radiotherapy centers.Appl Radiat Isot. 2005; 62: 261-265
- Implementation of alanine/EPR as transfer dosimetry system in a radiotherapy audit programme in Belgium.Radiother Oncol. 2011; 99: 94-96
- Photon beam audits for radiation therapy clinics: a pilot mailed dosemeter study in Turkey.Radiat Prot Dosim. 2012; 148: 249-257
Homnick J, Ibbott G, Springer A and Aguirre J, THD352-05: Optically Stimulated Luminescence (OSL) Dosimeters Can Be Used for Remote Dosimetry Services. Vol. 35. 2008.
TRS-398. Absorbed Dose Determination in External Beam Radiotherapy. International Atomic Energy Agency, Vienna 2000.
- Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy.Rad Meas. 2017; 106: 556-562
- The IAEA/WHO TLD postal programme for radiotherapy hospitals.Radiother Oncol. 2000; 54: 65-72
- Alanine-ESR dosimetry for radiotherapy IAEA experience.Appl Radiat Isot. 1996; 47: 1189-1191
- Dosimetry audit of radiotherapy treatment planning systems.Radiat Prot Dosim. 2015; 165: 472-476
- [P162] Postal TLD dosimetry audits in radiotherapy in poland – Results of 2017.Phys Med. 2018; 52: 145https://doi.org/10.1016/j.ejmp.2018.06.463
- Optically stimulated luminescence (OSL) dosimetry in medicine.Phys Med Biol. 2008; 53: R351-R379
- Characterization of Al(2)O(3) optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam.Phys Med Biol. 2016; 61: 7551-7570
- Dosimetric properties of radiophospholuminescent glass rod detector in high-energy photon beams from a linear accelarator and Cyber-Knife.Med Phys. 2004; 31: 1980-1986
- Evaluation of the dosimetric characteristics of a radiophotoluminescence glass dosimeter for high-energy photon and electron beams in the field of radiotherapy.Rad Meas. 2011; 46: 1117-1122
- Feasibility study of radiophotoluminescent glass rod dosimeter postal dose intercomparison for high energy photon beam.Appl Radiat Isot. 2009; 67: 324-328
- Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams.Radiother Oncol. 2008; 86: 258-263
- IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry. International Atomic Energy Agency/World Health Organization.Radiat Prot Dosim. 2002; 101: 387-392
- Transferability of ASTM/NIST alanine–polyethylene recipe at ISS.Appl Radiat Isot. 2000; 52: 1197-1201
- Accuracy considerations in EPR dosimetry.Appl Radiat Isot. 2000; 52: 1039-1050
- Development of a secondary standard for the absorbed dose to water based on the alanine EPR dosimetry system.Appl Radiat Isot. 2005; 62: 779-795
Glass AT. Glass dosemeter GD-300 series—Instruction Manual. 2012.
- Secondary Standard Dosimetry Laboratory at the Ruder Boskovic Institute, Zagreb.Arh Hig Rada Toksikol. 2006; 57: 189-194
Miljanic S. ntercomparison of dosimeters for non-targetorgan dose measurements in radiotherapy—activity of EURADOS WG9: Radiation protection in medicine. Proceedings of The 6th Inter-national Workshop on Individual Monitoring of Ionizing Radiation, Oarai, Japan 2010; 95-107.
- Tables of X-ray mass attenuation coefficients and mass-energy absorption coefficients.Natl Inst Stand Technol. 2008;
- Photon dosimetry methods outside the target volume in radiation therapy: Optically stimulated luminescence (OSL), thermoluminescence (TL) and radiophotoluminescence (RPL) dosimetry.Rad Meas. 2013; 57: 9-18
- Optically stimulated luminescence: fundamentals and applications.Wiley, 2011: 378
- External and environmental radiation dosimetry with optically stimulated luminescent detection device developed at the SCK.CEN.J Nucl Sci Technol. 2012; 2: 6-15
Pelowitz DB, MCNPX USER’S MANUAL: Version 2.7.0, in Los Alamos National Laboratory report LA-CP-11-00438. 2011.
- Uncertainty in positioning ion chamber at reference depth for various water phantoms.Rep Pract Oncol Radiother. 2018; 23: 199-206
- Comparative investigations of the relative thermoluminescent efficiency of LiF detectors to protons at different proton therapy facilities.Rad Meas. 2015; 82: 8-13
- Effect of alanine energy response and phantom material on depth dose measurements in ocular proton beams.Technol Cancer Res Treat. 2003; 2: 579-586
- Alanine/EPR dosimetry as a potential tool for quality assurance in proton beam radiotherapy.Rom Rep Phys. 2014; 66: 54-60
- Alanine dosimetry of proton therapy beams.Med Phys. 1997; 24: 447-453
- First dosimetry intercomparison results for the CATANA project.Phys Med. 1999; 15: 121-130
- Response characteristics of thermoluminescence and alanine-based dosemeters to 16 and 25 MeV proton beams.Radiat Prot Dosim. 1999; 85: 353-356
- Low temperature thermoluminescence anomaly of LiF:Mg, Cu, P radiation detectors exposed to 1H and 4He ions.Rad Meas. 2018; 119: 155-165
- Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C.Rad Meas. 2004; 38: 59-70
- Dosimetric evaluation of a glass dosimeter for proton beam measurements.Appl Radiat Isot. 2012; 70: 1616-1623
- Feasibility study of glass dosimeter for postal dose intercomparison of high-energy proton therapy beams.Rad Meas. 2013; 59: 66-72