Highlights
- •An “Ad hoc” phantom is designed and used to collect a large database of CT images.
- •Convolutional Neural Netwoks (CNNs) for denoise and segmentation tasks are developed.
- •Quality evaluation of CNNs processing is achieved by conventional and radiomic approaches.
- •Performances of different multi-tasks CNNs are investigated.
- •Radiomic features are proposed as indicators of texture alterations induced by CNNs.
Purpose
Method
Results
Conclusions
Keywords
1. Introduction
- He K.
- Zhang X.
- Ren S.
- Sun J.
Kim H, Park CM, Lee M, Park SJ, Song YS, Lee J, et al. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability. PLoS One 2016;11. doi: https://doi.org/10.1371/journal.pone.0164924.
- Solomon J.
- Lyu P.
- Marin D.
- Samei E.
- Lee D.
- Choi S.
- Kim H.J.
- Gong H.
- Yu L.
- Leng S.
- Dilger S.
- Ren L.
- Zhou W.
- et al.
- Solomon J.
- Lyu P.
- Marin D.
- Samei E.
- Gong H.
- Yu L.
- Leng S.
- Dilger S.
- Ren L.
- Zhou W.
- et al.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing. p. 234–241, ISBN 978-3-319-24574-4; 2015.
- Zhang K.
- Liu X.
- Shen J.
- Li Z.
- Sang Y.
- Wu X.
- et al.
- Maharjan P.
- Li L.
- Li Z.
- Xu N.
- Ma C.
- Li Y.
- Nasrin S.
- Alom M.Z.
- Burada R.
- Taha T.M.
- Asari V.K.
2. Materials and methods
2.1 Phantom and CT acquisitions


Current x Rotation Time | |||
---|---|---|---|
Quality | Reference | Average | CTDI |
Level | [mAs] | [mAs] | [mGy] |
1 | 100 | 64 | 4.4 |
2 | 120 | 76 | 5.1 |
3 | 140 | 89 | 6 |
4 | 160 | 102 | 6.9 |
5 | 180 | 115 | 7.8 |
6 | 200 | 128 | 8.6 |
7 | 220 | 142 | 9.6 |
8 | 240 | 154 | 10.2 |
HD | 600 | 390 | 26.3 |

2.2 Deep learning approach
2.2.1 Data preprocessing
- Zhao W.
- Liu L.
- Xiao J.
- Ke J.
- Shorten C.
- Khoshgoftaar T.
- Taylor L.
- Nitschke G.
2.2.2 CNNs architecture

- •An encoder-decoder (Enc-Dec) consisting in 4 convolutional layers for encoding, followed by 2 fully connected layers interposed with dropout layers (dropout rate tuned to reach optimum at 0.1), after which the model splits into two branches made of three convolutional layers each, for optimization of the two tasks.
- •An UNet model [31,
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing. p. 234–241, ISBN 978-3-319-24574-4; 2015.
32,- Zhang K.
- Liu X.
- Shen J.
- Li Z.
- Sang Y.
- Wu X.
- et al.
Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography.Cell. 2020; https://doi.org/10.1016/j.cell.2020.04.04533,47] adapted to the current tasks: a combination of max pooling, convolutional and fully connected layers for a total of 12 layers and 3 skip connections. Skip connections concatenate high resolution features produced by encoder to upsampled features of decoder to enable precise segmentation. The two branches for the separated tasks consist of three convolutional and two additional concatenation layer each. - •The UNet model was trained also separately in the two tasks of segmentation and denoise, by minimizing only the corresponding loss at one time. We will address these trained model as UNet-den and UNet-seg.
- Dong C.
- Loy C.C.
- He K.
- Tang X.
2.2.3 Performance metrics
2.3 Conventional images analysis
2.4 Radiomic features extraction
- Maharjan P.
- Li L.
- Li Z.
- Xu N.
- Ma C.
- Li Y.
- Sheen H.
- Kim W.
- Byun B.
- Kong C.
- Song W.S.
- Cho W.H.
- et al.
3. Results
3.1 Deep learning approach




3.2 Conventional image analysis



3.3 Radiomic features analysis
Repeatability | Sensitivity to noise | Sensitivity to reconstruction | |
---|---|---|---|
CV(a) (%) | Slope(b) () | Percentage difference(c) (%) | |
ShortRunEmphasis | 5.7 | 1.01 | 11.7 |
LongRunEmphasis | 6.4 | −0.62 | 4.4 |
Busyness | 6.7 | 0.30 | −1.2 |
ZonePercentage | 11.2 | 0.13 | 0.8 |





3.4 Test on dataset from a different CT scanner

4. Discussion
4.1 CNNs characterization
Baker M, Dong F, Primak A, Obuchowski N, Einstein D, Gandhi N, et al. Contrast-to-Noise Ratio and Low-Contrast Object Resolution on Full- and Low-Dose MDCT: Safire Versus Filtered Back Projection in a Low-Contrast Object Phantom and in the Liver. AJR Am J Roentgenol 2012;199. doi: https://doi.org/DOI:10.2214/AJR.11.7421.
- Fessler J.
- Rogers W.
- Fletcher J.
- Yu L.
- Li Z.
- Manduca A.
- Blezek D.
- Hough D.
- et al.
- Evans J.
- Politte D.
- Whiting B.R.
- O’Sullivan J.
- Williamson J.
- Geyer L.
- Schoepf U.J.
- Meinel F.
- Nance J.
- Bastarrika G.
- Leipsic J.
- et al.
4.2 Quality evaluation of the CNNs performance by means of conventional metrics
4.3 Quality evaluation of the CNNs performance by means of radiomic features
5. Conclusions
- Gong H.
- Yu L.
- Leng S.
- Dilger S.
- Ren L.
- Zhou W.
- et al.
- Kopp F.
- Catalano M.
- Pfeiffer D.
- Fingerle A.
- Rummeny E.
- Noel P.B.
- Massanes F.
- Brankov J.
Declaration of Competing Interest
Acknowledgements
Supplementary data
- Supplementary data 1
References
European Commission. Medical Radiation Exposure of the European Population. Rad Prot 2015;180.
International Commission On Radiological Protection (ICRP). ICRP PUBLICATION 26: 1977 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1977;26(1(3)).
Causey J, Guan Y, Dong W, Walker K, Qualls J, Prior F, et al. Lung cancer screening with low-dose CT scans using a deep learning approach. arXiv:190600240 2019;.
- Deep learning-based cardiovascular image diagnosis: A promising challenge.Future Gener Comp Sy. 2020; 110: 802-811https://doi.org/10.1016/j.future.2019.09.047
Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018;15(3, Part B):504–508. doi: 10.1016/j.jacr.2017.12.026.
- Applications of deep learning in biomedicine.Mol Pharm. 2016; 13: 1445-1454https://doi.org/10.1021/acs.molpharmaceut.5b00982
- Artificial intelligence in cardiology.J Am Coll Cardiol. 2018; 71: 2668-2679https://doi.org/10.1016/j.jacc.2018.03.521
- A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy.Phys Med. 2020; 72: 88-95https://doi.org/10.1016/j.ejmp.2020.03.023
- Deep architecture neural network-based real-time image processing for image-guided radiotherapy.Phys Med. 2020; 40: 79-87https://doi.org/10.1016/j.ejmp.2017.07.013
- Deep learning applications in medical image analysis.IEEE Access. 2018; 6: 9375-9389https://doi.org/10.1109/ACCESS.2017.2788044
- Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications.IEEE T Pattern Anal. 2018; 40: 1182-1194https://doi.org/10.1109/TPAMI.2017.2656884
- Deep learning in the biomedical applications: Recent and future status.Appl Sci. 2019; 9: 1526https://doi.org/10.3390/app9081526
- Deep learning and its applications in biomedicine.Genom Proteom Bioinf. 2018; 16: 17-32https://doi.org/10.1016/j.gpb.2017.07.003
- Low-Dose CT via Deep Neural Network.Biomed Opt Express. 2017; 8: 679-694https://doi.org/10.1364/BOE.8.000679
Humphries T, Si D, Coulter S, Simms M, Xing R. Comparison of deep learning approaches to low dose CT using low intensity and sparse view data. Proc SPIE 2019;10948. doi: https://doi.org/10.1117/12.2512597.
- Deep residual learning for image recognition.in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778https://doi.org/10.1109/CVPR.2016.90
Kim H, Park CM, Lee M, Park SJ, Song YS, Lee J, et al. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability. PLoS One 2016;11. doi: https://doi.org/10.1371/journal.pone.0164924.
- The evolution of image reconstruction for CT - from filtered back projection to artificial intelligence.Eur Radiol. 2019; 29: 2185-2195https://doi.org/10.1007/s00330-018-5810-7
- Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.Acad Radiol. 2020; 27: 82-87https://doi.org/10.1016/j.acra.2019.09.008
Dutta S, Fan J, Chevalier D. Study of CT image texture using deep learning techniques. Proc SPIE 2018;10577. doi: https://doi.org/10.1117/12.2292560.
Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 2020;30:3951–3959. doi: https://doi.org/10.1007/s00330-020-06724-w.
- Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.Korean J Radiol. 2020; 21: 356-364https://doi.org/10.3348/kjr.2019.0413
Samei E, Richard S. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Med Phys 2015;42. doi: https://doi.org/10.1118/1.4903899.
- Noise and spatial resolution properties of a commercially available deep-learning based CT reconstruction algorithm.Med Phys. 2020; https://doi.org/10.1002/MP.14319
- High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.Med Phys. 2019; 46https://doi.org/10.1002/mp.13258
- Possibility of Deep Learning in Medical Imaging Focusing Improvement of Computed Tomography Image Quality.J Comput Assist Tomogr. 2015; 44: 314https://doi.org/10.1097/RCT.0000000000000928
- A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.Med Phys. 2019; 46https://doi.org/10.1002/mp.13500
- Deep learning-based reconstruction in ultra-high-resolution computed tomography: Can image noise caused by high definition detector and the miniaturization of matrix element size be improved?.Phys Med. 2021; 81: 121-129https://doi.org/10.1016/j.ejmp.2020.12.006
- Image quality in ct: From physical measurements to model observers.Physica Medica. 2015; 31: 823-843https://doi.org/10.1016/j.ejmp.2015.08.007
- Proof of concept image artifact reduction by energy-modulated proton computed tomography (empct).Phys Med. 2021; 81: 237-244https://doi.org/10.1016/j.ejmp.2020.12.012
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing. p. 234–241, ISBN 978-3-319-24574-4; 2015.
- Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography.Cell. 2020; https://doi.org/10.1016/j.cell.2020.04.045
- A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose ct images.Med Phys. 2019; 46: 3906-3923https://doi.org/10.1002/mp.13713
- Residual u-net convolutional neural network architecture for low-dose ct denoising.Current Directions Biomed Eng. 2018; 4: 297-300https://doi.org/10.1515/cdbme-2018-0072
Yu S, Park B., Jeong J. Deep iterative down-up cnn for image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2019.
Park B, Yu S, Jeong J. Densely connected hierarchical network for image denoising. In: Proc. of the IEEE/CVF Conf. CVPR. 2019,.
- Comparing u-net based models for denoising color images.AI. 2020; 1: 465-486https://doi.org/10.3390/ai1040029
Yuan H, Jia J, Zhu Z. Sipid: A deep learning framework for sinogram interpolation and image denoising in low-dose ct reconstruction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018, p. 1521–1524. doi: https://doi.org/10.1109/ISBI.2018.8363862.
Bao L, Yang Z, Wang S, Bai D, Lee J. Real image denoising based on multi-scale residual dense block and cascaded u-net with block-connection. In: Proc. of the IEEE/CVF Conf. CVPR. 2020.
Gu S, Li Y, Gool LV, Timofte R. Self-guided network for fast image denoising. In: Proc. of the IEEE/CVF Conf. CVPR. 2019,.
- Improving extreme low-light image denoising via residual learning.in: 2019 IEEE International Conference on Multimedia and Expo (ICME). 2019: 916-921https://doi.org/10.1109/ICME.2019.00162
Yi X, Babyn P. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J Digit Imaging 2018;5:655–669. doi: https://doi.org/10.1007/s10278-018-0056-0.
- Learning to see in the dark.in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018
Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, et al. Low-dose ct denoising with convolutional neural network. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). 2017, p. 143–146. doi: https://doi.org/10.1109/ISBI.2017.7950488.
- Medical image denoising with recurrent residual u-net (r2u-net) base auto-encoder.in: 2019 IEEE National Aerospace and Electronics Conference (NAECON). 2019: 345-350https://doi.org/10.1109/NAECON46414.2019.9057834
- Mfp-unet: A novel deep learning based approach for left ventricle segmentation in echocardiography.Phys Med. 2019; 67: 58-69https://doi.org/10.1016/j.ejmp.2019.10.001
- Comparing u-net based models for denoising color images.AI. 2020; 1: 465-486https://doi.org/10.3390/ai1040029
Quattoni A, Collins M, Darrell T. Transfer learning for image classification with sparse prototype representations. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, p. 1–8. doi: 10.1109/CVPR.2008.4587637.
Buchholz T, Prakash M, Schmidt D, Krull A, Jug F. Denoiseg: Joint denoising and segmentation. In: Computer Vision - ECCV 2020 Workshops; vol. 12535. 2020, p. 143–146. doi: 10.1007/978-3-030-66415-2_21.
- Receiver operator characteristic (roc) analysis without truth.Med Decis Mak. 1990; 10: 24-29https://doi.org/10.1177/0272989X9001000105
Hajian-Tilaki K. Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013;4(2):627–635. doi: PMID:24009950; PMCID: PMC3755824.
- Signal detectability and medical decision-making.Science. 1971; 171: 1217-1219https://doi.org/10.1126/science.171.3977.1217
C.E. M.. Evaluation of Medical Images. Springer; 1992. doi: https://doi.org/10.1007/978-3-642-77888-9_10.
Sharp P, Barber DC, Brown DG, Burgess AE, Metz CE, Myers KJ, et al. 4. quality of the observed image. ICRU Report 1996;os-28(1):23–30. doi: https://doi.org/10.1093/jicru_os28.1.23.
- A new method of assessment of clinical teaching: Roc analysis.Med Educat. 1995; 29: 150-153https://doi.org/10.1111/j.1365-2923.1995.tb02819.x
- Measurement of image quality in diagnostic radiology.Appl Radiat Isot. 1999; 50: 21-38https://doi.org/10.1016/S0969-8043(98)00022-0
- CT image quality assessment by a Channelized Hotelling Observer (CHO): Application to protocol optimization.Phys Med. 2016; 32: 1717-1723https://doi.org/10.1016/j.ejmp.2016.11.002
- Radiomics: the facts and the challenges of image analysis.Eur Radiol Exp. 2018; 2: 36https://doi.org/10.1186/s41747-018-0068-z
- Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters.Nature Sci Rep. 2020; 10: 3852https://doi.org/10.1038/s41598-020-60868-9
Midya A, Chakraborty J, Gönen M, Do RKG, Simpson AL. Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. J of Med Imaging 2018;011020. doi: https://doi.org/10.1117/1.JMI.5.1.011020.
- Computational Radiomics System to Decode the Radiographic Phenotype.Cancer Res. 2017; 77: e104-e107https://doi.org/10.1158/0008-5472.CAN-17-0339
- Influence of sinogram affirmed iterative reconstruction of ct data on image noise characteristics and low-contrast detectability: An objective approach.PLOS ONE. 2013; 8: 1-10https://doi.org/10.1371/journal.pone.0056875
Khobragade P, Fan J, Rupcich F, Crotty D, TG TS. Application of fractal dimension for quantifying noise texture in computed tomography images. Med Phys 2018;8:1–10. doi: https://doi.org/10.1002/mp.13040.
- An improved index of image quality for task-based performance of ct iterative reconstruction across three commercial implementations.Radiology. 2015; 275: 725-734https://doi.org/10.1148/radiol.15132091
- Dropout: A simple way to prevent neural networks from overfitting.J Mach Learn Res. 2014; 15: 1929-1958https://doi.org/10.5555/2627435.2670313
Cogswell M, Ahmed F, Girshick BR, Zitnick LC, Batra D. Reducing overfitting in deep networks by decorrelating representations. International conference on learning representations; 2015.
- Research on the deep learning of the small sample data based on transfer learning.AIP Conference Proceedings. 2017; 1864020018https://doi.org/10.1063/1.4992835
Perez L, Wang J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv:171204621 2017;.
- A survey on image data augmentation for deep learning.J Big Data. 2019; 6https://doi.org/10.1186/s40537-019-0197-0
- Improving deep learning with generic data augmentation.in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI). 2018: 1542-1547https://doi.org/10.1109/SSCI.2018.8628742
Salman S, Liu X. Overfitting Mechanism and Avoidance in Deep Neural Networks. arXiv:190106566 2019;.
Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools 2000;doi: https://docs.opencv.org/.
Kanakis M, Bruggemann D, Saha S, Georgoulis S, Obukhov A, Gool LV. Reparameterizing convolutions for incremental multi-task learning without task interference. In: Proc. ECCV 2020; vol. 12365. Springer; 2020, p. 689–707. doi: 10.1007/978-3-030-58565-5_41.
- Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory.Procof IEEE Conf CVPR. 2017;
Ponomarenko N, Krivenko S, Egiazarian K, Astola J, Lukin V. Weighted mse based metrics for characterization of visual quality of image denoising methods. 2009.
- Noise2void - learning denoising from single noisy images.Proc IEEE/ CVPR. 2019;
- Mu-net: Multi-scale u-net for two-photon microscopy image denoising and restoration.Neural Networks. 2020; 125: 92-103https://doi.org/10.1016/j.neunet.2020.01.026
Liu D, Wen B, Liu X, Huang TS. When image denoising meets high-level vision tasks: A deep learning approach. CoRR 2017;abs/1706.04284. URL http://arxiv.org/abs/1706.04284.
- High-frequency sensitive generative adversarial network for low-dose ct image denoising.IEEE Access. 2020; 8: 930-943https://doi.org/10.1109/ACCESS.2019.2961983
- Single low-dose ct image denoising using a generative adversarial network with modified u-net generator and multi-level discriminator.IEEE Access. 2020; 8: 133470-133487https://doi.org/10.1109/ACCESS.2020.3006512
- Image super-resolution using deep convolutional networks.IEEE Trans Pattern Analysis Mach Intell. 2016; 38: 295-307https://doi.org/10.1109/TPAMI.2015.2439281
- Ct image denoising with perceptive deep neural networks.in: Fully3D 2017 Proc.2017: 858-863https://doi.org/10.12059/Fully3D.2017-11-3202015
- Loss functions for image restoration with neural networks.IEEE Trans Comput Imag. 2017; 3: 47-57https://doi.org/10.1109/TCI.2016.2644865
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. doi: http://tensorflow.org/.
Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative - Reference Manual. arXiv 2019;1612.07003. doi: https://doi.org/10.1148/radiol.2020191145.
- Repeatability and Reproducibility of Radiomic Features: A Systematic Review.Int J Radiation Oncol Biol Phys. 2018; 102: 1143-1158https://doi.org/10.1016/j.ijrobp.2018.05.053
Myers L, Sirois MJ. Spearman Correlation Coefficients, Differences between. Am Canc Soc. ISBN 9780471667193; 2006, doi: 10.1002/0471667196.ess5050.pub2.
- Metastasis risk prediction model in osteosarcoma using metabolic imaging phenotypes: A multivariable radiomics model.PLoS One. 2019; 14https://doi.org/10.1371/journal.pone.0225242
Oliver J, Budzevich M, Hunt D, Moros EG, Latifi K., TJ T.J.D., et al. Sensitivity of Image Features to Noise in Conventional and Respiratory-Gated PET/CT Images of Lung Cancer: Uncorrelated Noise Effects. Technol Cancer Res Treat 2017;16(5) 595–608. doi: https://doi.org/10.1177/1533034616661852.
- Matplotlib: A 2d graphics environment.Computing Sci Eng. 2007; 9: 90-95https://doi.org/10.1109/MCSE.2007.55
Baker M, Dong F, Primak A, Obuchowski N, Einstein D, Gandhi N, et al. Contrast-to-Noise Ratio and Low-Contrast Object Resolution on Full- and Low-Dose MDCT: Safire Versus Filtered Back Projection in a Low-Contrast Object Phantom and in the Liver. AJR Am J Roentgenol 2012;199. doi: https://doi.org/DOI:10.2214/AJR.11.7421.
- Spatial Resolution Properties of Penalized-Likelihood Image Reconstruction: Space-Invariant Tomographs.IEEE Trans Im Proc. 1996; 5https://doi.org/10.1109/83.535846
- Observer Performance in the Detection and Classification of Malignant Hepatic Nodules and Masses with CT Image-Space Denoising and Iterative Reconstruction.Radiol. 2015; 276https://doi.org/10.1148/radiol.2015141991
- Noise-resolution tradeoffs in x-ray CT imaging: A comparison of penalized alternating minimization and filtered backprojection algorithms.Med Phys. 2011; 38https://doi.org/10.1118/1.3549757
- State of the Art: Iterative CT Reconstruction Techniques.Radiol. 2015; 276https://doi.org/10.1148/radiol.2015132766
- Segmentation improvement through denoising of pet images with 3d-context modelling in wavelet domain.Phys Med. 2018; 52: 62-71https://doi.org/10.1016/j.ejmp.2018.08.008
- Radiation dose and image-quality assessment in computed tomography.J ICRU. 2012; 12: 9-149https://doi.org/10.1093/jicru/ndt007
- Methods for clinical evaluation of noise reduction techniques in abdominopelvic ct.Radiographics. 2014; 34: 849-862https://doi.org/10.1148/rg.344135128
Artmann U, Wueller D. Interaction of image noise, spatial resolution, and low contrast fine detail preservation in digital image processing. In: Digital Photography V; vol. 7250. SPIE; 2009, p. 154–162. doi: 10.1117/12.805927.
- A survey on the magnetic resonance image denoising methods.Biomed Signal Process Control. 2014; 9: 56-69https://doi.org/10.1016/j.bspc.2013.10.007
Artmann U, Wueller D. Noise reduction versus spatial resolution. In: Digital Photography IV; vol. 6817. SPIE; 2008, p. 71–80. doi: 10.1117/12.765887.
- Adaptive nonlocal means filtering based on local noise level for ct denoising.Med Phys. 2014; 41: 56-69https://doi.org/10.1118/1.4851635
Gong H, Hu Q, Walther A, Koo C, Takahashi E, Levin D, et al. Deep-learning-based model observer for a lung nodule detection task in computed tomography. Proc SPIE 2020;042807. doi: https://doi.org/10.1117/1.JMI.7.4.042807.
- CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.Med Phys. 2018; 45https://doi.org/10.1002/mp.13151
Reith F, Wandell B. Comparing pattern sensitivity of a convolutional neural network with an ideal observer and support vector machine. arXiv:191105055 2019;.
- Approximating the Ideal Observer and Hotelling Observer for binary signal detection tasks by use of supervised learning methods.IEEE Trans Med Im. 2019; 38: 3142456-3142468https://doi.org/10.1109/TMI.2019.2911211
Alnowami M, Mills G, Awis M, Elangovanr P, Patel M, Halling-Brown M, et al. A deep learning model observer for use in alterative forced choice virtual clinical trials. Proc SPIE 2018;10577. doi: https://doi.org/10.1117/12.2293209.
- Evaluation of CNN as anthropomorphic model observer.Proc SPIE. 2017; 10136https://doi.org/10.1117/12.2254603