Highlights
- •Deep learning algorithms can automatically interpret lung ultrasound images.
- •The results are used for automatic lung pathologies diagnosis e.g. pleural effusion.
- •These tools can be used independently or combined for COVID-19 disease evaluation.
Abstract
Keywords
1. Introduction:
- Soldati G.
- Smargiassi A.
- Inchingolo R.
- Buonsenso D.
- Perrone T.
- Briganti D.F.
- et al.
Mento F, Perrone T, Macioce VN, Tursi F, Buonsenso D, Torri E, et al. On the impact of different lung ultrasound imaging protocols in the evaluation of patients affected by coronavirus disease 2019. J Ultrasound Med 2020. https://doi.org/10.1002/jum.15580.
Perrone T, Soldati G, Padovini L, Fiengo A, Lettieri G, Sabatini U, et al. A new lung ultrasound protocol able to predict worsening in patients affected by severe acute respiratory syndrome coronavirus 2 pneumonia. J Ultrasound Med 2020. https://doi.org/10.1002/jum.15548.
Gargani L, Soliman-Aboumarie H, Volpicelli G, Corradi F, Pastore MC, Cameli M. Why, when, and how to use lung ultrasound during the COVID-19 pandemic: Enthusiasm and caution. Eur Heart J Cardiovasc Imaging 2020. https://doi.org/10.1093/ehjci/jeaa163.
Cid X, Canty D, Royse A, Maier AB, Johnson D, El-Ansary D, et al. Impact of point-of-care ultrasound on the hospital length of stay for internal medicine inpatients with cardiopulmonary diagnosis at admission: Study protocol of a randomized controlled trial - The IMFCU-1 (Internal Medicine Focused Clinical Ultrasound) s. Trials 2020. https://doi.org/10.1186/s13063-019-4003-2.
Amatya Y, Rupp J, Russell FM, Saunders J, Bales B, House DR. Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting. Int J Emerg Med 2018. https://doi.org/10.1186/s12245-018-0170-2.
- Volpicelli G.
- Elbarbary M.
- Blaivas M.
- Lichtenstein D.A.
- Mathis G.
- Kirkpatrick A.W.
- et al.
- Havelock T.
- Teoh R.
- Laws D.
- Gleeson F.
- Huang Q.
- Zhang F.
- Li X.
- Baloescu C.
- Toporek G.
- Kim S.
- McNamara K.
- Liu R.
- Shaw M.M.
- et al.
- Carrer L.
- Donini E.
- Marinelli D.
- Zanetti M.
- Mento F.
- Torri E.
- et al.
Kulhare S, Zheng X, Mehanian C, Gregory C, Zhu M, Gregory K, et al. Ultrasound-based detection of lung abnormalities using single shot detection convolutional neural networks BT - simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. In: Stoyanov D, Taylor Z, Aylward S, Tavares JMRS, Xiao Y, Simpson A, et al., editors., Cham: Springer International Publishing; 2018, p. 65–73.
2. Material and Methods:
2.1 Dataset
- Ford J.W.
- Heiberg J.
- Brennan A.P.
- Royse C.F.
- Canty D.J.
- El-Ansary D.
- et al.
- Brogi E.
- Gargani L.
- Bignami E.
- Barbariol F.
- Marra A.
- Forfori F.
- et al.
- Brogi E.
- Gargani L.
- Bignami E.
- Barbariol F.
- Marra A.
- Forfori F.
- et al.

Condition | Number of patients | Number of videos | Number of images | Number of pleural effusion videos |
---|---|---|---|---|
Normal | 31 | 252 | 44,211 | n/a |
Abnormal | 39 | 371 | 54,998 | 141 |
Total | 70 | 623 | 99,209 | 141 |
2.2 Pre-processing
Mason D. SU‐E‐T‐33: Pydicom: An Open Source DICOM Library. Med. Phys., 2011. https://doi.org/10.1118/1.3611983.
2.3 Labelling
2.4 Data split
- Efraimidis P.S.
- Spirakis P.G.
Fold # | Training set: Total (% out of 623) | Training set: Normal Patient (% out of the training set total) | Training set: Pleural Effusion Patient (% out of the training set total) | Test set: Total (% out of 623) | Test set: Normal Patient (% out of the test set total) | Test set: Pleural Effusion Patient (% out of the test set total) |
---|---|---|---|---|---|---|
0 | 563 (90.37%) | 218 (38.72%) | 345 (61.28%) | 60 (9.63%) | 34 (56.67%) | 26 (43.33%) |
1 | 566 (90.85%) | 221 (39.05%) | 345 (60.95%) | 57 (9.15%) | 31 (54.39%) | 26 (45.61%) |
2 | 546 (87.64%) | 235 (43.04%) | 311 (56.96%) | 77 (12.36%) | 17 (22.08%) | 60 (77.92%) |
3 | 558 (89.57%) | 226 (40.5%) | 332 (59.5%) | 65 (10.43%) | 26 (40.0%) | 39 (60.0%) |
4 | 566 (90.85%) | 223 (39.4%) | 343 (60.6%) | 57 (9.15%) | 29 (50.88%) | 28 (49.12%) |
5 | 561 (90.05%) | 221 (39.39%) | 340 (60.61%) | 62 (9.95%) | 31 (50.0%) | 31 (50.0%) |
6 | 561 (90.05%) | 235 (41.89%) | 326 (58.11%) | 62 (9.95%) | 17 (27.42%) | 45 (72.58%) |
7 | 561 (90.05%) | 239 (42.6%) | 322 (57.4%) | 62 (9.95%) | 13 (20.97%) | 49 (79.03%) |
8 | 561 (90.05%) | 216 (38.5%) | 345 (61.5%) | 62 (9.95%) | 36 (58.06%) | 26 (41.94%) |
9 | 564 (90.53%) | 234 (41.49%) | 330 (58.51%) | 59 (9.47%) | 18 (30.51%) | 41 (69.49%) |
Fold # | Training set: Total (out of 99,209) | Training set: Normal Patient (out of the training set total) | Training set: Pleural Effusion Patient (out of the training set total) | Test set: Total (out of 99,209) | Test set: Normal Patient (out of the test set total) | Test set: Pleural Effusion Patient (out of the test set total) |
---|---|---|---|---|---|---|
0 | 89,934 (90.65%) | 38,763 (43.1%) | 51,171 (56.9%) | 9275 (9.35%) | 5448 (58.74%) | 3827 (41.26%) |
1 | 90,153 (90.87%) | 39,199 (43.48%) | 50,954 (56.52%) | 9056 (9.13%) | 5012 (55.34%) | 4044 (44.66%) |
2 | 88,394 (89.1%) | 39,498 (44.68%) | 48,896 (55.32%) | 10,815 (10.9%) | 4713 (43.58%) | 6102 (56.42%) |
3 | 87,012 (87.71%) | 38,633 (44.4%) | 48,379 (55.6%) | 12,197 (12.29%) | 5578 (45.73%) | 6619 (54.27%) |
4 | 91,312 (92.04%) | 39,514 (43.27%) | 51,798 (56.73%) | 7897 (7.96%) | 4697 (59.48%) | 3200 (40.52%) |
5 | 89,738 (90.45%) | 39,989 (44.56%) | 49,749 (55.44%) | 9471 (9.55%) | 4222 (44.58%) | 5249 (55.42%) |
6 | 87,893 (88.59%) | 40,510 (46.09%) | 47,383 (53.91%) | 11,316 (11.41%) | 3701 (32.71%) | 7615 (67.29%) |
7 | 86,542 (87.23%) | 40,791 (47.13%) | 45,751 (52.87%) | 12,667 (12.77%) | 3420 (27.0%) | 9247 (73.0%) |
8 | 90,859 (91.58%) | 38,651 (42.54%) | 52,208 (57.46%) | 8350 (8.42%) | 5560 (66.59%) | 2790 (33.41%) |
9 | 91,044 (91.77%) | 42,351 (46.52%) | 48,693 (53.48%) | 8165 (8.23%) | 1860 (22.78%) | 6305 (77.22%) |
Dataset | Number of images for video-based labelling approach | Number of images for frame-based labelling approach |
---|---|---|
Overall | 99,209 | 99,209 |
Normal class (Score 0) | 79,089 (80%) | 83,061 (84%) |
Pleural effusion class (Score 1) | 20,120 (20%) | 16,148 (16%) |
Fold # | Training set: Normal class (Score V0) | Training set: Pleural effusion class (Score V1) | Test set: Normal class (Score V0) | Test set: Pleural effusion class (Score V1) |
---|---|---|---|---|
0 | 71,036 (78.99%) | 18,898 (21.01%) | 8053 (86.82%) | 1222 (13.18%) |
1 | 71,383 (79.18%) | 18,770 (20.82%) | 7706 (85.09%) | 1350 (14.91%) |
2 | 70,758 (80.05%) | 17,636 (19.95%) | 8331 (77.03%) | 2484 (22.97%) |
3 | 69,642 (80.04%) | 17,370 (19.96%) | 9447 (77.45%) | 2750 (22.55%) |
4 | 72,251 (79.13%) | 19,061 (20.87%) | 6838 (86.59%) | 1059 (13.41%) |
5 | 71,053 (79.18%) | 18,685 (20.82%) | 8036 (84.85%) | 1435 (15.15%) |
6 | 70,653 (80.39%) | 17,240 (19.61%) | 8436 (74.55%) | 2880 (25.45%) |
7 | 69,655 (80.49%) | 16,887 (19.51%) | 9434 (74.48%) | 3233 (25.52%) |
8 | 71,930 (79.17%) | 18,929 (20.83%) | 7159 (85.74%) | 1191 (14.26%) |
9 | 73,440 (80.66%) | 17,604 (19.34%) | 5649 (69.19%) | 2516 (30.81%) |
Fold # | Training set: Normal class (Score F0) | Training set: Pleural effusion class (Score F1) | Test set: Normal class (Score F0) | Test set: Pleural effusion class (Score F1) |
---|---|---|---|---|
0 | 74,733 (83.1%) | 15,201 (16.9%) | 8328 (89.79%) | 947 (10.21%) |
1 | 75,508 (83.76%) | 14,645 (16.24%) | 7553 (83.4%) | 1503 (16.6%) |
2 | 74,156 (83.89%) | 14,238 (16.11%) | 8905 (82.34%) | 1910 (17.66%) |
3 | 72,998 (83.89%) | 14,014 (16.11%) | 10,063 (82.5%) | 2134 (17.5%) |
4 | 76,223 (83.48%) | 15,089 (16.52%) | 6838 (86.59%) | 1059 (13.41%) |
5 | 74,770 (83.32%) | 14,968 (16.68%) | 8291 (87.54%) | 1180 (12.46%) |
6 | 74,093 (84.3%) | 13,800 (15.7%) | 8968 (79.25%) | 2348 (20.75%) |
7 | 73,332 (84.74%) | 13,210 (15.26%) | 9729 (76.81%) | 2938 (23.19%) |
8 | 75,822 (83.45%) | 15,037 (16.55%) | 7239 (86.69%) | 1111 (13.31%) |
9 | 75,914 (83.38%) | 15,130 (16.62%) | 7147 (87.53%) | 1018 (12.47%) |
2.5 Deep learning architecture
- Roy S.
- Menapace W.
- Oei S.
- Luijten B.
- Fini E.
- Saltori C.
- et al.
Van Sloun RJG, Demi L. Localizing B-lines in lung ultrasonography by weakly supervised deep learning, in-vivo results. IEEE J Biomed Heal Informatics 2020. https://doi.org/10.1109/JBHI.2019.2936151.
- Roy S.
- Menapace W.
- Oei S.
- Luijten B.
- Fini E.
- Saltori C.
- et al.
- Roy S.
- Menapace W.
- Oei S.
- Luijten B.
- Fini E.
- Saltori C.
- et al.
2.6 Evaluations
3. Results
Metrics | Video-based labelling approach | Frame-based labelling approach |
---|---|---|
Mean accuracy | 91.1179% | 92.3785% |
Standard deviation | 3.3525 | 3.1525 |
Accuracy (the best fold) | 95.68% | 96.75% |
F1-score (the best fold) | 87.71% | 90.47% |
Precision (the best fold) | 87.29% | 92.76% |
Recall (the best fold) | 88.14% | 88.28% |
Accuracy (the worst fold) | 84.58% | 86.30% |
F1-score (the worst fold) | 40.02% | 34.98% |
Precision (the worst fold) | 38.85% | 42.82% |
Recall (the worst fold) | 41.26% | 29.57% |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 1,881 | FP: 274 |
Score 0 (Predicted) | FN: 253 | TN: 9,789 |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 1,884 | FP: 147 |
Score 0 (Predicted) | FN: 250 | TN: 9,916 |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 420 | FP: 661 |
Score 0 (Predicted) | FN: 598 | TN: 6,486 |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 301 | FP: 402 |
Score 0 (Predicted) | FN: 717 | TN: 6,745 |
Metric | Video-based approach with the frame-based ground truth labels | Frame-based approach |
---|---|---|
Mean Accuracy | 99.97% | 99.93% |
Accuracy (the best fold) | 99.99% | 99.95% |
Precision (the best fold) | 99.98% | 99.95% |
Recall (the best fold) | 99.99% | 99.96% |
F1-score (the best fold) | 99.99% | 99.95% |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 43,270 | FP: 7 |
Score 0 (Predicted) | FN: 5 | TN: 43,694 |
Confusion Matrix | Score 1 (Actual) | Score 0 (Actual) |
---|---|---|
Score 1 (Predicted) | TP: 43,806 | FP: 23 |
Score 0 (Predicted) | FN: 17 | TN: 44,026 |


Cross-conditions | TP (frame-based) | TN (frame-based) | FP (frame-based) | FN (frame-based) |
---|---|---|---|---|
TP (video-based) | 1,807 LUS images Fig. 3 (D) | N/A | N/A | 74 LUS images Fig. 2 (D) |
TN (video-based) | N/A | 9,710 LUS images Fig. 3 (C) | 79 LUS images Fig. 2 (C) | N/A |
FP (video-based) | N/A | 206 LUS images Fig. 2 (B) | 68 LUS images Fig. 3 (B) | N/A |
FN (video-based) | 77 LUS images Fig. 2 (A) | N/A | N/A | 176 LUS images Fig. 3 (A) |
4. Discussion
- Roy S.
- Menapace W.
- Oei S.
- Luijten B.
- Fini E.
- Saltori C.
- et al.
- Aujayeb A.
- Hussein M.
- Haq I.U.
- Hameed M.
- Thomas M.
- Elarabi A.
- Allingawi M.
- et al.
- Aujayeb A.
- Soni N.J.
- Franco R.
- Velez M.I.
- Schnobrich D.
- Dancel R.
- Restrepo M.I.
- et al.
5. Conclusions
Acknowledgments
- Roy S.
- Menapace W.
- Oei S.
- Luijten B.
- Fini E.
- Saltori C.
- et al.
References
- Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method.J Ultrasound Med. 2020; https://doi.org/10.1002/jum.15285
Mento F, Perrone T, Macioce VN, Tursi F, Buonsenso D, Torri E, et al. On the impact of different lung ultrasound imaging protocols in the evaluation of patients affected by coronavirus disease 2019. J Ultrasound Med 2020. https://doi.org/10.1002/jum.15580.
Perrone T, Soldati G, Padovini L, Fiengo A, Lettieri G, Sabatini U, et al. A new lung ultrasound protocol able to predict worsening in patients affected by severe acute respiratory syndrome coronavirus 2 pneumonia. J Ultrasound Med 2020. https://doi.org/10.1002/jum.15548.
Gargani L, Soliman-Aboumarie H, Volpicelli G, Corradi F, Pastore MC, Cameli M. Why, when, and how to use lung ultrasound during the COVID-19 pandemic: Enthusiasm and caution. Eur Heart J Cardiovasc Imaging 2020. https://doi.org/10.1093/ehjci/jeaa163.
Cid X, Canty D, Royse A, Maier AB, Johnson D, El-Ansary D, et al. Impact of point-of-care ultrasound on the hospital length of stay for internal medicine inpatients with cardiopulmonary diagnosis at admission: Study protocol of a randomized controlled trial - The IMFCU-1 (Internal Medicine Focused Clinical Ultrasound) s. Trials 2020. https://doi.org/10.1186/s13063-019-4003-2.
Amatya Y, Rupp J, Russell FM, Saunders J, Bales B, House DR. Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting. Int J Emerg Med 2018. https://doi.org/10.1186/s12245-018-0170-2.
- International evidence-based recommendations for point-of-care lung ultrasound.Intensive Care Med. 2012; https://doi.org/10.1007/s00134-012-2513-4
- Pleural procedures and thoracic ultrasound: British Thoracic Society pleural disease guideline 2010.Thorax. 2010; https://doi.org/10.1136/thx.2010.137026
- Machine learning in ultrasound computer-aided diagnostic systems: a survey.Biomed Res Int. 2018; https://doi.org/10.1155/2018/5137904
- Automated lung ultrasound B-Line Assessment using a deep learning algorithm.IEEE Trans Ultrason Ferroelectr Freq Control. 2020; https://doi.org/10.1109/TUFFC.2020.3002249
- Automatic pleural line extraction and COVID-19 scoring from lung ultrasound data.IEEE Trans Ultrason Ferroelectr Freq Control. 2020; https://doi.org/10.1109/TUFFC.2020.3005512
Kulhare S, Zheng X, Mehanian C, Gregory C, Zhu M, Gregory K, et al. Ultrasound-based detection of lung abnormalities using single shot detection convolutional neural networks BT - simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. In: Stoyanov D, Taylor Z, Aylward S, Tavares JMRS, Xiao Y, Simpson A, et al., editors., Cham: Springer International Publishing; 2018, p. 65–73.
- A pilot assessment of 3 point-of-care strategies for diagnosis of perioperative lung pathology.Anesth Analg. 2017; https://doi.org/10.1213/ANE.0000000000001726
- Thoracic ultrasound for pleural effusion in the intensive care unit: A narrative review from diagnosis to treatment.Crit Care. 2017; https://doi.org/10.1186/s13054-017-1897-5
Mason D. SU‐E‐T‐33: Pydicom: An Open Source DICOM Library. Med. Phys., 2011. https://doi.org/10.1118/1.3611983.
- DICOM PS3.3 2016c -.Information Object Definitions. 2016;
PyTorch. PyTorch documentation - PyTorch master documentation. PyTorch; 2019.
- Weighted random sampling with a reservoir.Inf Process Lett. 2006; https://doi.org/10.1016/j.ipl.2005.11.003
- Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound.IEEE Trans Med Imaging. 2020; https://doi.org/10.1109/TMI.4210.1109/TMI.2020.2994459
Van Sloun RJG, Demi L. Localizing B-lines in lung ultrasonography by weakly supervised deep learning, in-vivo results. IEEE J Biomed Heal Informatics 2020. https://doi.org/10.1109/JBHI.2019.2936151.
- Spatial transformer networks.Adv. Neural Inf. Process. Syst. 2015;
- Clarification on pleural effusions in COVID-19.Radiol Cardiothorac Imaging. 2020; https://doi.org/10.1148/ryct.2020200330
- Characteristics of pleural effusion in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia.Am J Med Sci. 2021; 361: 281-284https://doi.org/10.1016/j.amjms.2020.09.008
- Pleural effusion as an isolated finding in COVID-19 infection.Respir Med Case Rep. 2020; https://doi.org/10.1016/j.rmcr.2020.101269
- Ultrasound in the diagnosis and management of pleural effusions.J Hosp Med. 2015; https://doi.org/10.1002/jhm.2434