Advertisement

Monte Carlo as quality control tool of stereotactic body radiation therapy treatment plans

Published:March 23, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.02.025

      Highlights

      • A Monte Carlo model of linear accelerator head was created and Validated.
      • Dosimetry comparisons of MC with Monaco treatment planning system were done for 40 SBRT patients of various cancer types.
      • Proof the visibility of using Monte Carlo as a quality control tool of the patient’s dosimetry.

      Abstract

      Purpose/objective

      The objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.

      Material/methods

      Using EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.

      Results

      Validation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.

      Conclusion

      SBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Martin A.
        • Gaya A.
        Stereotactic body radiotherapy: a review.
        Clin Oncol (R Coll Radiol). 2010; 22 (Epub 2010 Jan 25 PMID: 20092981): 157-172https://doi.org/10.1016/j.clon.2009.12.003
        • Zhao Y.
        • Qi G.
        • Yin G.
        • Wang X.
        • Wang P.
        • Li J.
        • et al.
        A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.
        Radiat Oncol. 2014; 9https://doi.org/10.1186/s13014-014-0287-2
        • Vanderstraeten B.
        • Reynaert N.
        • Paelinck L.
        • Madani I.
        • De Wagter C.
        • De Gersem W.
        • et al.
        Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
        Med Phys. 2006; 33: 3149-3158https://doi.org/10.1118/1.2241992
      1. Fotina I, Kragl G, Kroupa B, Trausmuth R, Georg D. Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol. 2011 Jul;187(7):433-41. doi: 10.1007/s00066-011-2215-9. Epub 2011 Jun 27. PMID: 21713394.

        • Takahashi W.
        • Yamashita H.
        • Saotome N.
        • Iwai Y.
        • Sakumi A.
        • Haga A.
        • et al.
        Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT): comparison of commercially available Monte Carlo dose calculation with other algorithms.
        Radiat Oncol. 2012; 7: 20https://doi.org/10.1186/1748-717X-7-20
        • Chetty I.J.
        • Curran B.
        • Cygler J.E.
        • DeMarco J.J.
        • Ezzell G.
        • Faddegon B.A.
        • et al.
        Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.
        Med Phys. 2007; 34: 4818-4853https://doi.org/10.1118/1.2795842
        • Ma C.-M.
        • Mok E.
        • Kapur A.
        • Pawlicki T.
        • Findley D.
        • Brain S.
        • et al.
        Clinical implementation of a Monte Carlo treatment planning system.
        Med Phys. 1999; 26: 2133-2143https://doi.org/10.1118/1.598729
        • Martens C.
        • Reynaert N.
        • De Wagter C.
        • Nilsson P.
        • Coghe M.
        • Palmans H.
        • et al.
        Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations.
        Med Phys. 2002; 29: 1528-1535https://doi.org/10.1118/1.1487421
        • Cranmer-Sargison G.
        • Beckham W.A.
        • Popescu I.A.
        Modelling an extreme water-lung interface using a single pencil beam algorithm and the Monte Carlo method.
        Phys Med Biol. 2004; 49 (PMID: 15152692): 1557-1567https://doi.org/10.1088/0031-9155/49/8/013
        • Krieger T.
        • Sauer O.A.
        Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom.
        Phys Med Biol. 2005; 50 (Epub 2005 Feb 17 PMID: 15798260): 859-868https://doi.org/10.1088/0031-9155/50/5/010
        • Ma C.-M.
        • Pawlicki T.
        • Jiang S.B.
        • Li J.S.
        • Deng J.
        • Mok E.
        • et al.
        Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system.
        Phys Med Biol. 2000; 45: 2483-2495https://doi.org/10.1088/0031-9155/45/9/303
        • Bedford J.L.
        • Thomas M.D.R.
        • Smyth G.
        Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator.
        J Appl Clin Med Phys. 2013; 14: 172-185https://doi.org/10.1120/jacmp.v14i2.4136
      2. Kawrakow I. EGSnrc: The EGSnrc code system: Monte Carlo Simulation of electron and photon transport, man. 2020. https://nrc-cnrc.github.io/EGSnrc/.

        • Rogers D.W.
        • Faddegon B.A.
        • Ding G.X.
        • Ma C.M.
        • We J.
        • Mackie T.R.
        BEAM: a Monte Carlo code to simulate radiotherapy treatment units.
        Med Phys. 1995; 22 (PMID: 7643786): 503-524https://doi.org/10.1118/1.597552
      3. Walters B, Kawrakow I, Rogers DWO. DOSXYZnrc user's manual, 2020. https://nrc-cnrc.github.io/EGSnrc/.

        • Björk P.
        • Knöös T.
        • Nilsson P.
        Influence of initial electron beam characteristics on monte carlo calculated absorbed dose distributions for linear accelerator electron beams.
        Phys Med Biol. 2002; 47 (PMID: 12476980): 4019-4041https://doi.org/10.1088/0031-9155/47/22/308
        • Conneely Elaine
        • Alexander Andrew
        • Stroian Gabriella
        • Seuntjens Jan
        • Foley Mark J.
        An investigation into the use of MMCTP to tune accelerator source parameters and testing its clinical application.
        J Appl Clin Med Phys. 2013; 14: 3-14https://doi.org/10.1120/jacmp.v14i2.3692
        • Pena J.
        • Franco L.
        • Gómez F.
        • Iglesias A.
        • Lobato R.
        • Mosquera J.
        • et al.
        Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles.
        Phys Med Biol. 2004; 49: 4929-4942https://doi.org/10.1088/0031-9155/49/21/006
      4. Wilcox EE, Daskalov GM, Lincoln H. Stereotactic radiosurgery-radiotherapy: Should Monte Carlo treatment planning be used for all sites? Pract Radiat Oncol. 2011 Oct-Dec;1(4):251-60. doi: 10.1016/j.prro.2011.03.001. Epub 2011 May 5. PMID: 24674003.

        • Sheikh-Bagheri D.
        • Rogers D.W.
        Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters.
        Med Phys. 2002; 29 (PMID: 11930913): 379-390https://doi.org/10.1118/1.1446109
        • Chibani O.
        • Moftah B.
        • Ma C.M.
        On Monte Carlo modeling of megavoltage photon beams: a revisited study on the sensitivity of beam parameters.
        Med Phys. 2011; 38 (PMID: 21361187): 188-201https://doi.org/10.1118/1.3523625
        • Bouchoucha S.
        • Reynaert N.
        A Monte Carlo platform for independent dose verification of cyberknife and tomotherapy treatments.
        Physica Med. 2015; 31: e40https://doi.org/10.1016/j.ejmp.2015.10.046
        • Vanderstraeten Barbara
        • Chin Pik Wai
        • Fix Michael
        • Leal Antonio
        • Mora Grisel
        • Reynaert Nick
        • et al.
        Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study.
        Phys Med Biol. 2007; 52: 539-562https://doi.org/10.1088/0031-9155/52/3/001
        • Fraass Benedick
        • Doppke Karen
        • Hunt Margie
        • Kutcher Gerald
        • Starkschall George
        • Stern Robin
        • et al.
        American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.
        Med Phys. 1998; 25: 1773-1829https://doi.org/10.1118/1.598373
      5. Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, Mihailidis DN, Ouhib Z, Ritter T, Snyder MG, Fairobent L; AAPM Medical Physics Practice Guideline Task Group. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys. 2015 Sep 8;16(5):14–34. doi: 10.1120/jacmp.v16i5.5768. PMID: 26699330; PMCID: PMC5690154.

        • Ma Chang Ming Charlie
        • Chetty Indrin J.
        • Deng Jun
        • Faddegon Bruce
        • Jiang Steve B.
        • Li Jinsheng
        • et al.
        Beam modeling and beam model commissioning for Monte Carlo dose calculation-based radiation therapy treatment planning: Report of AAPM Task Group 157.
        Med Phys. 2020; 47https://doi.org/10.1002/mp.13898
        • Das Indra J.
        • Cheng Chee-Wai
        • Watts Ronald J.
        • Ahnesjö Anders
        • Gibbons John
        • Li X. Allen
        • et al.
        TG-106 of the Therapy Physics Committee of the AAPM. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM.
        Med Phys. 2008; 35: 4186-4215https://doi.org/10.1118/1.2969070
        • Fippel M.
        • Haryanto F.
        • Dohm O.
        • Nüsslin F.
        • Kriesen S.
        A virtual photon energy fluence model for Monte Carlo dose calculation.
        Med Phys. 2003 Mar; 30 (PMID: 12674229): 301-311https://doi.org/10.1118/1.1543152
      6. https://www.primoproject.net/primo/main.

      7. https://www.ptwdosimetry.com/en/products/veriqa/.

      8. https://www.iba-dosimetry.com/product/scimoca-monte-carlo-calculation/.

        • Bush K.K.
        • Zavgorodni S.F.
        IEC accelerator beam coordinate transformations for clinical Monte Carlo simulation from a phase space or full BEAMnrc particle source.
        Australas Phys Eng Sci Med. 2010 Dec; 33 (Epub 2010 Nov 5 PMID: 21053115): 351-355https://doi.org/10.1007/s13246-010-0037-1
        • Lobo J.
        • Popescu I.A.
        Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife.
        Phys Med Biol. 2010; 55 (Epub 2010 Jul 29 PMID: 20668344): 4431-4443https://doi.org/10.1088/0031-9155/55/16/S01
        • Kawrakow I.
        • Fippel M.
        Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC.
        Phys Med Biol. 2000; 45 (PMID: 10958187): 2163-2183https://doi.org/10.1088/0031-9155/45/8/308
        • Kawrakow I.
        • Rogers D.W.
        • Walters B.R.
        Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting.
        Med Phys. 2004; 31 (PMID: 15543798): 2883-2898https://doi.org/10.1118/1.1788912
        • Kontaxis C
        • Bol G H
        • Stemkens B
        • Glitzner M
        • Prins F M
        • Kerkmeijer L G W
        • et al.
        Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.
        Phys Med Biol. 2017; 62: 7233-7248https://doi.org/10.1088/1361-6560/aa82ae
      9. Giacometti V, King RB, Agnew CE, Irvine DM, Jain S, Hounsell AR, McGarry CK. An evaluation of techniques for dose calculation on cone beam computed tomography. Br J Radiol. 2019 Apr;92(1096):20180383. doi: 10.1259/bjr.20180383. Epub 2019 Feb 26. PMID: 30433821; PMCID: PMC6540850.

      10. Belshaw L, Agnew CE, Irvine DM, Rooney KP, McGarry CK. Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose. Radiat Oncol. 2019 Nov 1;14(1):189. doi: 10.1186/s13014-019-1400-3. PMID: 31675962; PMCID: PMC6825357.