Advertisement

A pilot study of a postal dosimetry system using the Fricke dosimeter for research irradiators

Published:March 19, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.02.027

      Highlights

      • Fricke dosimeter to be used in postal dosimetry for research irradiators.
      • Doses ranging from 25 to 300 Gy were delivered by a research irradiator.
      • Fading tests showed no significant difference for the absorbed doses over 9 days.

      Abstract

      Cobalt-60 irradiators and soft X-ray machines are frequently used for research purposes, but the dosimetry is not always performed using the recommended protocols. This may lead to confusing and untrustworthy results within the conducted research. Postal dosimetry systems have already been approved by the IAEA, with thermoluminescence dosimeters (TLD) and optically stimulated luminescence (OSL) as the most commonly used dosimeter systems in these cases. The present study tests the Fricke dosimeter properties as a potential system to be used in postal dosimetry for a project using research irradiators. The Fricke solution was prepared according to the literature, and the linearity and fading tests were performed accordingly. All calculated doses were measured using a NE2571 Farmer ionization chamber as a reference. Doses ranging from 25 to 300 Gy were delivered by a research irradiator, with 150 kV and 22 mA to the Fricke solutions inside polyethylene (PE) bags (4 × 4 × 0.2 cm3). The results compared with the ionization chamber showed a linear response to the range of doses used. Fading tests showed no significant difference for the absorbed doses over 9 days, with a maximum difference of 1.5% found between days 0 and 3. The Fricke dosimeter presented good linearity, for low and high doses, and low uncertainties for the fading even for 9 days after irradiation. These preliminary results are motivating, and as the next step, we intend to design a postal dosimetry system using the PE bags of Fricke solution.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bruno A.C.
        • Mazaro S.J.
        • Amaral L.L.
        • Rego E.M.
        • Oliveira H.F.
        • Pavoni J.F.
        Biological X-ray irradiator characterization for use with small animals and cells.
        Braz J Med Biol Res. 2017; 50: 1-6https://doi.org/10.1590/1414-431X20165848
        • Tillner F.
        • Thute P.
        • Bütof R.
        • Krause M.
        • Enghardt W.
        Pre-clinical research in small animals using radiotherapy technology – a bidirectional translational approach.
        Zeitschrift Für Medizinische Physik. 2014; 24: 335-351https://doi.org/10.1016/j.zemedi.2014.07.004
        • Romesser P.B.
        • Kim A.S.
        • Jeong J.
        • Mayle A.
        • Dow L.E.
        • Lowe S.W.
        Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome.
        Proc Natl Acad Sci. 2019; 116: 20672-20678https://doi.org/10.1073/pnas.1906611116
        • Cerquetti L.
        • Bucci B.
        • Carpinelli G.
        • Lardo P.
        • Proietti A.
        • Saporito R.
        • et al.
        Antineoplastic Effect of a Combined Mitotane Treatment/Ionizing Radiation in Adrenocortical Carcinoma: A Preclinical Study.
        Cancers. 2019; 11: 1768https://doi.org/10.3390/cancers11111768
        • Becker B.V.
        • Seeger T.
        • Beiert T.
        • Antwerpen M.
        • Palnek A.
        • Port M.
        • et al.
        Impact of Ionizing Radiation on Electrophysiological Behavior of Human-induced Ipsc-derived Cardiomyocytes on Multielectrode Arrays.
        Health Phys. 2018; 115: 21-28https://doi.org/10.1097/HP.0000000000000817
      1. de Andrade CBV, Ramos IPR, de Moraes ACN, do Nascimento ALR, Salata C, Goldenberg RCDS, et al. Radiotherapy-induced skin reactions induce fibrosis mediated by TGF-β1 cytokine. Dose-Response 2017;15. 10.1177/1559325817705019.

        • Andrade C.B.V.
        • Salata C.
        • Silva C.M.
        • Ferreira-Machado S.C.
        • Braz D.
        • Almeida A.P.
        • et al.
        Evaluation of radiotherapy and chemotherapy effects in bone matrix using X-ray microfluorescence.
        Radiat Phys Chem. 2014; 95https://doi.org/10.1016/j.radphyschem.2013.04.031
        • Mantuano A.
        • Mota C.L.
        • Pickler A.
        • Sena G.
        • Braz D.
        • Salata C.
        Elemental Distribution in Ascending Aortic after Radiotherapy and Chemotherapy by Low Energy X-ray Fluorescence Spectroscopy.
        J Instrum. 2018; 13: 2016
        • Svensson H.
        • Hanson G.P.
        • Zsdénszky K.
        The IAEA/WHO TL dosimetry service for radiotherapy centres 1969–1987.
        Acta Oncol. 1990; 29: 461-467https://doi.org/10.3109/02841869009090030
        • Mobit P.N.
        • Mayles P.
        • Nahum A.E.
        The quality dependence of LiF {TLD} in megavoltage photon beams: Monte Carlo simulation and experiments.
        Phys Med Biol. 1996; 41: 387-398https://doi.org/10.1088/0031-9155/41/3/004
        • Mizuno H.
        • Kanai T.
        • Kusano Y.
        • Ko S.
        • Ono M.
        • Fukumura A.
        • et al.
        Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams.
        Radiother Oncol. 2008; 86: 258-263https://doi.org/10.1016/j.radonc.2007.10.024
        • Dąbrowski R.
        • Drozdyk I.
        • Kukołowicz P.
        High accuracy dosimetry with small pieces of Gafchromic films.
        Reports Practical Oncol Radiotherapy. 2018; 23: 114-120https://doi.org/10.1016/j.rpor.2018.01.001
      2. Stucki G, Münch W, Quintel H. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy. Proc Int Symp Vienna 2002;IAEA-CN-96:103–13.

        • Salata C.
        • David M.G.
        • de Almeida C.E.
        • El Gamal I.
        • Cojocaru C.
        • Mainegra-Hing E.
        • et al.
        Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192 Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC.
        Canada. Physics in Medicine & Biology. 2018; 63085004https://doi.org/10.1088/1361-6560/aab2b8
        • El Gamal I.
        • Cojocaru C.
        • Mainegra-Hing E.
        • McEwen M.
        The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy.
        Phys Med Biol. 2015; 60: 4481-4495https://doi.org/10.1088/0031-9155/60/11/4481
        • Franco L.
        • Gavazzi S.
        • de Almeida C.E.
        Determination of the G value for HDR 192Ir sources using ionometric measurements.
        International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). 2011
        • Fricke H.
        • Morse S.
        The chemical action of roentgen rays on dilute ferrosulphate solutions as a measure of dose.
        Am J Roentgenol Radium. 1927; 18: 430-432
      3. Olszanski A, Klassen N V, Ross CK, Shortt KR. The IRS Fricke Dosimetry System. Institute for National Measurement Standards, National Research Council 2002;PIRS 0815.

      4. Klassen N V, Shortt KR, Seuntjens J, Ross CK. Fricke dosimetry : the difference between G (Fe 3 +) for 60 Co γ -rays and high-energy x-rays 1999;44:1609–24. 10.1088/0031-9155/44/7/303.

        • Law J.
        • Redpath A.T.
        Measurement of ferric ion concentration in the Fricke dosemeter.
        Phys Med Biol. 1971; 16: 531-532https://doi.org/10.1088/0031-9155/16/3/419
        • Vörös S.
        • Anton M.
        • Boillat B.
        Relative response of alanine dosemeters for high-energy electrons determined using a Fricke primary standard.
        Phys Med Biol. 2012; 57: 1413-1432https://doi.org/10.1088/0031-9155/57/5/1413
        • Cojocaru C.
        • Stucki G.
        • McEwen M.
        • Ross C.
        Determination of Absorbed Dose to Water in Megavoltage Electron Beams Using a Calorimeter-Fricke Hybrid System.
        International Atomic Energy Agency (IAEA): IAEA, 2011
        • Moussous O.
        • Khoudri S.
        • Benguerba M.
        Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy.
        Australas Phys Eng Sci Med. 2011; 34: 523-528https://doi.org/10.1007/s13246-011-0093-1
        • Muñoz Arango E.
        • Pickler A.
        • Mantuano A.
        • Salata C.
        • de Almeida C.E.
        Feasibility study of the Fricke chemical dosimeter as an independent dosimetric system for the small animal radiation research platform (SARRP).
        Physica Med. 2020; https://doi.org/10.1016/j.ejmp.2020.03.006
        • Palm A.
        • Mattsson O.
        Influence of sulphuric acid contaminants on Fricke dosimetry.
        Phys Med Biol. 2000; 45https://doi.org/10.1088/0031-9155/45/9/403
        • Performance M.
        • Spectrophotom- N.I.
        • Spectrophotometers P.
        • Radiation I.
        Using the Fricke Reference-Standard Dosimetry System 1.
        Measurement. 2004; : 1-8https://doi.org/10.1520/E1026-13
        • Mantuano A.
        • De Amorim G.J.
        • David M.G.
        • Rosado P.H.G.
        • Salata C.
        • Magalhães L.A.G.
        • et al.
        Linearity and reproducibility response of Fricke dosimetry for low energy X-Ray beam.
        J Phys Conf Ser. 2018;975.; https://doi.org/10.1088/1742-6596/975/1/012052
        • Cottens E.
        • Janssens A.
        • Eggermont G.
        • Jacobs R.
        Absorbed dose calorimetry with a graphite calorimeter, and G-value determinations for the Fricke dose meter in high-energy electron beams.
        International Atomic Energy Agency (IAEA). 1981;
        • Dealmeida C.E.
        • Ochoa R.
        • De Lima M.C.
        • David M.G.
        • Pires E.J.
        • Peixoto J.G.
        • et al.
        A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.
        PLoS ONE. 2014; 9: 1-13https://doi.org/10.1371/journal.pone.0115155
        • Ma C.-M.
        • Nahum A.E.
        Dose conversion and wall correction factors for Fricke dosimetry in high-energy photon beams: analytical model and Monte Carlo calculations.
        Phys Med Biol. 1993; 38: 93-114https://doi.org/10.1088/0031-9155/38/1/007
      5. McEwen M, El Gamal I, Mainegra-Hing E, Cojocaru C. Determination of the radiation chemical yield (G) for the Fricke chemical dosimetry system in photon and electron beams 2014:24.

        • Mohamed I.
        • El M.
        An Absorbed Dose to Water Primary Standard for Ir-192 Brachytherapy Affairs in partial fulfillment of the requirements for the degree of.
        Carleton University. 2013;
      6. Salata C, David M, Rosado P, de Almeida C. SU-F-BRA-10: Fricke Dosimetry: Determination of the G-Value for Ir-192 Energy Based On the NRC Methodology. Medical Physics 2015;42:3535–3535. 10.1118/1.4925221.

        • Ma C.M.
        • Coffey C.W.
        • DeWerd L.A.
        • Liu C.
        • Nath R.
        • Seltzer S.M.
        • et al.
        AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology.
        Med Phys. 2001; 28: 868-893https://doi.org/10.1118/1.1374247
        • Mantuano A.
        • Salata C.
        • Mota C.L.
        • Pickler A.
        • de Castro P.L.
        • Magalhães L.A.G.
        • et al.
        Technical Note: Fricke dosimetry for blood irradiators.
        Med Phys. 2020; https://doi.org/10.1002/mp.14487
        • Andreo P.
        • Burns D.T.
        • Hohlfeld K.
        • Huq M.S.
        • Kanai T.
        • Laitano F.
        • et al.
        Absorbed Dose Determination in External Beam Radiotherapy An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water.
        Austria, Vienna2000
      7. IAEA TECHNICAL REPORTS SERIES No. 398. IAEA TRS 398: Dosimetry and Medical Radiation Physics Section 2000;398.

        • Palm Å.
        • Mattsson O.
        Experimental determination of beam quality conversion factors kQ in clinical photon beams using ferrous sulphate (Fricke) dosimetry.
        Med Phys. 2002; 29: 2756-2762https://doi.org/10.1118/1.1521941
        • Villarreal-Barajas E.
        • Gonzlez-Martnez J.R.
        • Urea-Nuez F.
        • Martnez-Ayala L.M.
        • Tovar-Muoz V.
        Intercomparison of Absorbed Dose to Water Measurements for 60Co Gamma Rays using Fricke, Alanine and Radiochromic Dye Film Dosimetry.
        Radiat Prot Dosim. 2002; 101: 449-452https://doi.org/10.1093/oxfordjournals.rpd.a006023
        • Ma C.
        • Nahum A.E.
        • Rogers D.W.O.
        • Shortt K.R.
        • Ross C.K.
        • Bielajew A.F.
        Wall-correction and absorbed-dose conversion factors for Fricke dosimetry: Monte Carlo calculations and measurements.
        Med Phys. 1993; 20: 283-292https://doi.org/10.1118/1.597128
      8. Aguirre J, Tailor R, Ibbott G, Stovall M, Hanson W. Thermoluminescence dosimetry as a tool for the remote verification of output for radiotherapy beams: 25 years of experience. Proceedings of the international symposium on standards and codes of practice in medical radiation dosimetry IAEA-CN-96/ 82., Viena: IAEA; 2002, p. 191–99.

      9. Ferreira IH, Dutreix A, Bridier A, Chavaudra J, Svensson H. The ESTRO-QUALity assurance network (EQUAL) for European radiotherapy centers. Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143), vol. 4, IEEE; n.d., p. 3112–3. 10.1109/IEMBS.2000.901541.

        • Jafari S.M.
        • Bradley D.A.
        • Gouldstone C.A.
        • Sharpe P.H.G.
        • Alalawi A.
        • Jordan T.J.
        • et al.
        Low-cost commercial glass beads as dosimeters in radiotherapy.
        Radiat Phys Chem. 2014; 97: 95-101https://doi.org/10.1016/j.radphyschem.2013.11.007
      10. Mai HH, Duong NGD, Kojima T. γ-Ray dose intercomparison in the absorbed dose range, 5–50 kGy, using dichromate and alanine dosimeters 1996;47:259–61.

        • Izewska J.
        • Andreo P.
        The IAEA/WHO TLD postal programme for radiotherapy hospitals.
        Radiother Oncol. 2000; 54: 65-72https://doi.org/10.1016/S0167-8140(99)00164-4
      11. ISO/ASTM 51261. ISO/ASTM 51261:2013 Practice for calibration of routine dosimetry systems for radiation processing. Astm 2013:18.

        • Ross C.K.
        • Klassen N.V.
        • Shortt K.R.
        • Smith G.D.
        A direct comparison of water calorimetry and Fricke dosimetry.
        Phys Med Biol. 1989; https://doi.org/10.1088/0031-9155/34/1/003
      12. ISO/ASTM 51026. ISO/ASTM 51026:2015 Practice for using the Fricke dosimetry system 2015.