Advertisement

Dose-response of Fricke- and PAGAT-dosimetry gels in kilovoltage and megavoltage photon beams: Impact of LET on sensitivity

  • José Vedelago
    Correspondence
    Corresponding author. Current affiliation: Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
    Affiliations
    Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina

    Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina
    Search for articles by this author
  • David Chacón
    Affiliations
    Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina

    Departamento de Fśica, Universidad Nacional, Heredia, Costa Rica
    Search for articles by this author
  • Marcelo Romero
    Affiliations
    Departamento de Química Orgánica, FCQ-UNC, Córdoba, Argentina

    Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
    Search for articles by this author
  • Daniel Venencia
    Affiliations
    Instituto Zunino – Fundación Marie Curie, Córdoba, Argentina
    Search for articles by this author
  • Facundo Mattea
    Affiliations
    Departamento de Química Orgánica, FCQ-UNC, Córdoba, Argentina

    Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
    Search for articles by this author
  • Mauro Valente
    Affiliations
    Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina

    Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina

    Centro de Física e Ingeniería en Medicina – CFIM & Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile
    Search for articles by this author
Published:April 07, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.002

      Highlights

      • Fricke and PAGAT gel dosimeters sensitivities were evaluated in photon beams.
      • Both dosimeters showed quantifiable response for kV and MV photon beams.
      • Optical absorbance and MRI can measure dose-response for kV photons.
      • Response at 44 kV was found to be on average 0.65 times the response at 6 MV.
      • Differences were explained in terms of radiation chemical yields variations.

      Abstract

      Purpose: Dosimetry of ionizing radiation quantifies the energy deposited by an incident beam to the medium. This study presents the relative response of two types of gel dosimeters describing their differences by estimating radiation chemical yields produced in water radiolysis.
      Methods: Two types of gel dosimeter were used, namely an acid ferrous ion solution infused with xylenol orange known as Fricke gel and a polymer gel based on acrylamide and N,N’-methylenebis(acrylamide) known as PAGAT. Samples were irradiated using two photon beam energies, one from a conventional X-ray tube operated at 44 kV and the other one from a LINAC operated at 6 MV. The dosimeters were analyzed by optical absorbance and magnetic resonance imaging. Additionally, the linear energy transfer of each beam was calculated using Monte Carlo simulations for further estimation of the radiation chemical yields produced during water radiolysis.
      Results: Obtained results for both gel dosimeters indicate that their response at 44 kV and 6 MV are different, regardless of the read-out technique. On average, the sensitivity at 44 kV was found to be 65 % of the response at 6 MV. The calculated radiation chemical yields are in agreement with the observed experimental results.
      Conclusions: The main reason for the difference in the response of the dosimeters may be related to the linear energy transfer of each photon beam, which varies the production of primary chemical species during water radiolysis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee A.W.
        • Ng W.T.
        • Chan L.L.
        • Hung W.M.
        • Chan C.C.
        • Sze H.C.
        • et al.
        Evolution of treatment for nasopharyngeal cancer–success and setback in the intensity-modulated radiotherapy era.
        Radiother Oncol. 2014; 110: 377-384https://doi.org/10.1016/j.radonc.2014.02.003
        • Fraass B.
        • Doppke K.
        • Hunt M.
        • Kutcher G.
        • Starkschall G.
        • Stern R.
        • Van Dyke J.
        American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.
        Med Phys. 1998; 25: 1773-1829https://doi.org/10.1118/1.598373
        • Huq M.S.
        • Andreo P.
        • Song H.
        Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams.
        Phys Med Biol. 2001; 46: 2985https://doi.org/10.1088/0031-9155/46/11/315
        • Low D.A.
        • Parikh P.
        • Dempsey J.F.
        • Wahab S.
        • Huq S.
        Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams.
        Med Phys. 2003; 30: 1706-1711https://doi.org/10.1118/1.1582558
        • Greer P.B.
        • Popescu C.C.
        Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy.
        Med Phys. 2003; 30: 1618-1627https://doi.org/10.1118/1.1582469
      1. Schreiner L. True 3D chemical dosimetry (gels, plastics): development and clinical role. In: J Phys Conf Ser, vol. 573, IOP Publishing; 2015. p. 012003.https://doi.org/10.1088/1742-6596/573/1/012003.

      2. Schreiner L. Fundamentals of 3D dosimetry. In: J Phys Conf Ser, vol. 1305, IOP Publishing; 2019. p. 012022.https://doi.org/10.1088/1742-6596/1305/1/012022.

        • Babic S.
        • McNiven A.
        • Battista J.
        • Jordan K.
        Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning.
        Phys Med Biol. 2009; 54: 2463https://doi.org/10.1088/1742-6596/573/1/012003
        • Murry P.
        • Baldock C.
        Research software for radiotherapy gel dosimetry.
        Australasian Phys Eng S. 2000; 23 (URL:http://europepmc.org/abstract/MED/10979593): 44-51
        • Guo P.
        • Adamovics J.
        • Oldham M.
        Characterization of a new radiochromic three-dimensional dosimeter.
        Med Phys. 2006; 33: 1338-1345https://doi.org/10.1118/1.2192888
        • Fricke H.
        • Morse S.
        The chemical action of roentgen rays on dilute ferrosulphate solutions as a measure of dose.
        Am J Roentgenol Radium Therapy Nucl Med. 1927; 18: 430-432
      3. Schreiner L. Review of Fricke gel dosimeters. In: J Phys Conf Ser, vol. 3, IOP Publishing; 2004. p. 9.https://doi.org/10.1088/1742-6596/3/1/003.

        • Davies J.
        • Baldock C.
        Sensitivity and stability of the Fricke-gelatin-xylenol orange gel dosimeter.
        Radiat Phys Chem. 2008; 77: 690-696https://doi.org/10.1016/j.radphyschem.2008.01.007
        • Maryanski M.J.
        • Gore J.C.
        • Kennan R.P.
        • Schulz R.J.
        NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI.
        Magn Reson Imaging. 1993; 11: 253-258https://doi.org/10.1016/0730-725X(93)90030-H
        • Baldock C.
        • De Deene Y.
        • Doran S.
        • Ibbott G.
        • Jirasek A.
        • Lepage M.
        • et al.
        Polymer gel dosimetry.
        Phys Med Biol. 2010; 55: R1https://doi.org/10.1088/0031-9155/55/5/R01
        • Resende T.D.
        • Lizar J.C.
        • dos Santos F.M.
        • Borges L.F.
        • Pavoni J.F.
        Study of the formulation optimization and reusability of a MAGAT gel dosimeter.
        Phys Medica. 2019; 63: 105-111https://doi.org/10.1016/j.ejmp.2019.05.018
        • Titus D.
        • Samuel E.J.J.
        • Roopan S.M.
        Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry.
        Appl Microbiol Biot. 2016; 100: 4803-4816https://doi.org/10.1007/s00253-016-7489-5
        • Venning A.
        • Hill B.
        • Brindha S.
        • Healy B.
        • Baldock C.
        Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging.
        Phys Med Biol. 2005; 50: 3875https://doi.org/10.1088/0031-9155/50/16/015
        • Maryanski M.
        • Zastavker Y.
        • Gore J.
        Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel.
        Phys Med Biol. 1996; 41: 2705https://doi.org/10.1088/0031-9155/41/12/010
      4. De Deene Y. Review of quantitative MRI principles for gel dosimetry. In: J Phys Conf Ser, vol. 164, IOP Publishing; 2009. p. 012033.https://doi.org/10.1088/1742-6596/164/1/012033.

        • De Deene Y.
        • Vergote K.
        • Claeys C.
        • De Wagter C.
        The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels.
        Phys Med Biol. 2006; 51: 653https://doi.org/10.1088/0031-9155/51/3/012
        • Klassen N.
        • Shortt K.
        • Seuntjens J.
        • Ross C.
        Fricke dosimetry: the difference between G(Fe3+) for 60Co γ-rays and high-energy x-rays.
        Phys Med Biol. 1999; 44: 1609https://doi.org/10.1088/0031-9155/44/7/303
        • Sellakumar P.
        • Samuel E.J.J.
        • Supe S.S.
        Water equivalence of polymer gel dosimeters.
        Radiat Phys Chem. 2007; 76: 1108-1115https://doi.org/10.1016/j.radphyschem.2007.03.003
        • Cavinato C.
        • Campos L.
        Energy dependent response of the Fricke gel dosimeter prepared with 270 Bloom gelatine for photons in the energy range 13.93 keV–6 MeV.
        Nucl Instrum Methods A. 2010; 619: 198-202https://doi.org/10.1016/j.nima.2009.10.144
      5. Šolc J, Sochor V, Kozubíková P. Energy dependence of Fricke-xylenol orange gel and gel based on Turnbull blue for low-energy photons. In: J Phys Conf Ser, vol. 573, IOP Publishing; 2015. p. 012069.https://doi.org/10.1088/1742-6596/573/1/012069.

        • Gastaldo J.
        • Boudou C.
        • Lamalle L.
        • Troprès I.
        • Corde S.
        • Sollier A.
        • et al.
        Normoxic polyacrylamide gel doped with iodine: response versus X-ray energy.
        Eur J Radiol. 2008; 68: S118-S120https://doi.org/10.1016/j.ejrad.2008.04.053
        • Chacón D.
        • Strumia M.
        • Valente M.
        • Mattea F.
        Effect of inorganic salts and matrix crosslinking on the dose response of polymer gel dosimeters based on acrylamide.
        Radiat Meas. 2018; 117: 7-18https://doi.org/10.1016/j.radmeas.2018.07.004
        • Ferradini C.
        • Jay-Gerin J.-P.
        La radiolyse de l’eau et des solutions aqueuses: historique et actualité.
        Can J Chem. 1999; 77: 1542-1575https://doi.org/10.1139/v99-162
        • Meesungnoen J.
        • Benrahmoune M.
        • Filali-Mouhim A.
        • Mankhetkorn S.
        • Jay-Gerin J.-P.
        Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3–6.5 keV/μm: application to 137Cs gamma rays.
        Radiat Res. 2001; 155 (10.1667/0033-7587(2001)155[0269:MCCOTP]2.0.CO;2): 269-278
        • Gupta B.
        • Gomathy K.
        Consistency of ferrous sulphate-benzoic acid-xylenol orange dosimeter.
        Int J Appl Radiat Isotopes. 1974; 25: 509-513https://doi.org/10.1016/0020-708X(74)90077-5
        • Vedelago J.
        • Obando D.
        • Malano F.
        • Conejeros R.
        • Figueroa R.
        • Garcia D.
        • González G.
        • et al.
        Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation.
        Radiat Meas. 2016; 91: 54-64https://doi.org/10.1016/j.radmeas.2016.05.003
        • Sheikh-Bagheri D.
        • Rogers D.
        Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.
        Med Phys. 2002; 29: 391-402https://doi.org/10.1118/1.1445413
        • Valente M.
        • Graña D.
        • Malano F.
        • Pérez P.
        • Quintana C.
        • Tirao G.
        • Vedelago J.
        Development and characterization of a microCT facility.
        IEEE Lat Am T. 2016; 14: 3967-3973https://doi.org/10.1109/TLA.2016.7785920
        • Chacón D.
        • Vedelago J.
        • Strumia M.
        • Valente M.
        • Mattea F.
        Raman spectroscopy as a tool to evaluate oxygen effects on the response of polymer gel dosimetry.
        Appl Radiat Isotopes. 2019; 150: 43-52https://doi.org/10.1016/j.apradiso.2019.05.006
        • Mesbahi A.
        • Zakariaee S.-S.
        Optical characterization of NIPAM and PAGAT polymer gels for radiation dosimetry.
        Iran J Med Phys. 2014; 11: 188-194https://doi.org/10.22038/ijmp.2014.2626
        • Gambarini G.
        • Veronese I.
        • Bettinelli L.
        • Felisi M.
        • Gargano M.
        • Ludwig N.
        • et al.
        Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters.
        Radiat Meas. 2017; 106: 622-627https://doi.org/10.1016/j.radmeas.2017.03.024
        • Vedelago J.
        • Quiroga A.
        • Triviño S.
        • Mattea F.
        • Valente M.
        Parameter estimation and mathematical modeling of the diffusion process of a benzoic acid infused fricke gel dosimeter.
        Appl Radiat Isotopes. 2019; 151: 89-95https://doi.org/10.1016/j.apradiso.2019.04.035
        • Vandecasteele J.
        • De Deene Y.
        On the validity of 3D polymer gel dosimetry: I. Reproducibility study.
        Phys Med Biol. 2013; 58: 19https://doi.org/10.1088/0031-9155/58/1/19
        • Vandecasteele J.
        • De Deene Y.
        Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification.
        Phys Med Biol. 2013; 58: 6241https://doi.org/10.1088/0031-9155/58/18/6241
        • Senden R.
        • De Jean P.
        • McAuley K.
        • Schreiner L.
        Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers.
        Phys Med Biol. 2006; 51: 3301https://doi.org/10.1088/0031-9155/51/14/001
      6. Ferrari A, Sala PR, Fasso A, Ranft J. FLUKA: a multi-particle transport code. CERN-2005-10; 2005, INFN/TC_05/11, SLAC-R-773.

        • Böhlen T.
        • Cerutti F.
        • Chin M.
        • Fassò A.
        • Ferrari A.
        • Ortega P.
        • et al.
        The FLUKA code: developments and challenges for high energy and medical applications.
        Nucl Data Sheets. 2014; 120: 211-214https://doi.org/10.1016/j.nds.2014.07.049
        • Valente M.
        • Vedelago J.
        • Chacón D.
        • Mattea F.
        • Velásquez J.
        • Pérez P.
        Water-equivalence of gel dosimeters for radiology medical imaging.
        Appl Radiat Isotopes. 2018; 141: 193-198https://doi.org/10.1016/j.apradiso.2018.03.005
        • Appleby A.
        • Schwarz H.A.
        Radical and molecular yields in water irradiated by γ rays and heavy ions.
        J Phys Chem. 1969; 73: 1937-1941https://doi.org/10.1021/j100726a048
        • Buback M.
        • Frauendorf H.
        • Günzler F.
        • Huff F.
        • Vana P.
        Determining initiator efficiency in radical polymerization by electrospray-ionization mass spectrometry.
        Macromol Chem Phys. 2009; 210: 1591-1599https://doi.org/10.1002/macp.200900237
        • Jašo V.
        • Stoiljković D.
        • Radičević R.
        • Bera O.
        Kinetic modeling of bulk free-radical polymerization of methyl methacrylate.
        Polym J. 2013; 45: 631https://doi.org/10.1038/pj.2013.6
        • Fogler H.S.
        Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi.
        Pearson Education, 2010
        • Schamboeck V.
        • Kryven I.
        • Iedema P.D.
        Acrylate network formation by free-radical polymerization modeled using random graphs.
        Macromol Theor Simul. 2017; 26: 1700047https://doi.org/10.1002/mats.201700047
        • Bednarz S.
        • Wesołowska-Pietak A.
        • Konefał R.
        • Świergosz T.
        Persulfate initiated free-radical polymerization of itaconic acid: Kinetics, end-groups and side products.
        Eur Polym J. 2018; 106: 63-71https://doi.org/10.1016/j.eurpolymj.2018.07.010
      7. L’Annunziata MF. Radiation Physics and Radionuclide Decay. In: Handbook of Radioactivity Analysis, Elsevier; 2012. p. 1–162.https://doi.org/10.1016/B978-0-12-384873-4.00001-3.

      8. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2, vol. 7, National Academies Press; 2006.https://doi.org/10.17226/11340.

        • Lefort M.
        Radiation chemistry.
        Annu Rev Phys Chem. 1958; 9: 123-156https://doi.org/10.1146/annurev.pc.09.100158.001011
        • Hochanadel C.
        • Ghormley J.
        A calorimetric calibration of gamma-ray actinometers.
        J Chem Phys. 1953; 21: 880-885https://doi.org/10.1063/1.1699051
        • Rosiak J.
        • Ulański P.
        Synthesis of hydrogels by irradiation of polymers in aqueous solution.
        Radiat Phys Chem. 1999; 55: 139-151https://doi.org/10.1016/S0969-806X(98)00319-3
        • Ghobashy M.M.
        Ionizing Radiation-Induced Polymerization.
        Ionizing Radiation Effects and Applications. 2018; https://doi.org/10.5772/intechopen.73234