Highlights
- •Deep learning framework is implemented for volumetric glandular fraction prediction.
- •Total of 208 anthropomorphic virtual breast phantoms are studied.
- •Mean glandular dose was estimated for the breasts with the predicted breast glandularity.
- •Exposure factors from a clinical cohort were used to calculate Mean glandular dose.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
1. Introduction
- Sardanelli F.
- Aase H.S.
- Álvarez M.
- Azavedo E.
- Baarslag H.J.
- Balleyguier C.
- et al.
- Sarno A.
- Mettivier G.
- Di Lillo F.
- Bliznakova K.
- Sechopoulos I.
- Russo P.
Arana Peña LM, Fedon C, Garcia E, Diaz O, Longo R, Dance DR, et al. Monte Carlo dose evaluation of different fibroglandular tissue distribution in breast imaging. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th International Workshop on Breast Imaging (IWBI2020); vol. 11513. SPIE; 2020, p. 76. https://dx.doi.org/10.1117/12.2564278.
Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, et al. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal. 2021;102061. https://doi.org/10.1016/j.media.2021.102061.
- Sechopoulos I.
- Boone J.M.
- Dance D.
- van Engen R.
- Russo P.
- Young K.C.
Warren LM, Harris P, Gomes S, Trumble M, Halling-Brown MD, Dance DR, et al. Deep learning to calculate breast density from processed mammography images. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th International Workshop on Breast Imaging (IWBI2020); vol. 11513. SPIE; 2020, p. 24. https://dx.doi.org/10.1117/12.2561278.
2. Materials and Methods

2.1 Computational breast phantoms
Graff CG. In: Kontos D, Flohr TG, Lo JY, editors. Medical Imaging 2016: Physics of Medical Imaging, 9783. SPIE; 2016. p. 978309. https://dx.doi.org/10.1117/12.2216312.
Arana Peña LM, Fedon C, Garcia E, Diaz O, Longo R, Dance DR, et al. Monte Carlo dose evaluation of different fibroglandular tissue distribution in breast imaging. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th International Workshop on Breast Imaging (IWBI2020); vol. 11513. SPIE; 2020, p. 76. https://dx.doi.org/10.1117/12.2564278.
- Maas S.A.
- Ellis B.J.
- Ateshian G.A.
- Weiss J.A.
Phantoms | Thickness (cm) | Volume (cm3) | Radius (cm) | VGF |
---|---|---|---|---|
208 | 5.8 (4.6–6.8) | 420 (325–580) | 6.7 (5.9-7.9) | 0.23 (0.13–0.51) |
2.2 Data generation: Monte Carlo simulations
- Badano A.
- Graff C.G.
- Badal A.
- Sharma D.
- Zeng R.
- Samuelson F.W.
- et al.
- Bick U.
- Diekmann F.
Thickness range (mm) | Filter material | Tube potential (kV) |
---|---|---|
20–25 | Rhodium | 25 |
25–35 | 26 | |
35–45 | 27 | |
45–50 | 28 | |
50–55 | 29 | |
55–60 | 30 | |
60–65 | 31 | |
65–70 | Silver | 30 |
70–80 | 32 | |
80–85 | 33 | |
85–90 | 34 |
2.3 Breast models masks: segmentation, relative height and relative glandular height
where SDD is the source-to-detector distance, AG is the distance between the bottom of the breast and the detector, t is the compressed breast thickness, N the number of patches, is the ith element of mask I (the value is 1 for inner breast, 0 otherwise), the relative height from mask II for the element is the skin thickness and A the pixel area. This approximation considers that the projected breast image corresponds to the area at half of the breast thickness.
where N the number of patches, is the relative area of the patch belonging to the inner breast (from 0 to 1), the glandular height (from 0 to 1), the relative average height of the patch (with skin), the relative skin thickness.
2.4 Neural networks: deep learning framework
- Bullock J.
- Cuesta-Lázaro C.
- Quera-Bofarull A.
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., et al. Pytorch: An imperative style, high-performance deep learning library. In: Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E., Garnett R., editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; 2019, p. 8024–8035.

- Bullock J.
- Cuesta-Lázaro C.
- Quera-Bofarull A.

Task | Architecture | Input | Output | Loss function |
---|---|---|---|---|
I – Skin segmentation | Fig. 2 | Mammography image, pixels binned 44. Pixels normalized by those from a fixed region, with the average pixel value subtracted and divided by the standard deviation. | A tensor with three channels with probabilities for background, skin and inner breast. | Cross entropy |
II – Relative height | Fig. 2 | Mammography image, pixels binned 44. Pixels normalized by the pixels closer to the center of the breast. | Matrix with the relative breast height by pixel (h, values between 0 and 1). | Mean squared error |
III – Relative glandular height | Fig. 3 | 11 features. Pixels normalized by number of histories. | Relative glandular height (glandular height times relative height, gh). | Mean squared error |
2.5 Estimation of glandularity
where and are the densities of adipose and glandular tissues (0.93 g/cm3 and 1.04 g/cm3), respectively [
2.6 Dosimetry and dose levels in mammography
where is the incident air kerma, and DgN is the normalized glandular dose (a conversion coefficient) [
- Trevisan Massera R.
- Tomal A.
- Trevisan Massera R.
- Tomal A.
2.7 Clinical case selection
- Gennaro G.
- Bigolaro S.
- Hill M.L.
- Stramare R.
- Caumo F.

3. Results
3.1 Breast segmentation training and validation








3.2 Breast dosimetry


4. Discussion
- Feng S.S.J.
- Patel B.
- Sechopoulos I.
- Badano A.
- Graff C.G.
- Badal A.
- Sharma D.
- Zeng R.
- Samuelson F.W.
- et al.
- Trevisan Massera R.
- Tomal A.
- Sarno A.
- Mettivier G.
- Di Lillo F.
- Bliznakova K.
- Sechopoulos I.
- Russo P.
5. Conclusions
Acknowledgments
Appendix A. Calibration for breast volume and VGF


Appendix B. Supplementary data
- Supplementary data 1
References
- Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France.G. Eur Radiol. 2017; 27: 2737-2743https://doi.org/10.1007/s00330-016-4612-z
- Dosimetry in x-ray-based breast imaging.Phys Med Biol. 2016; 61: R271-R304https://doi.org/10.1088/0031-9155/61/19/R271
- The myth of the 50–50 breast.Med Phys. 2009; 36: 5437-5443https://doi.org/10.1118/1.3250863
- Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.Med Phys. 2015; 42: 6337-6348https://doi.org/10.1118/1.4931966
- Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry.Med Phys. 2012; 39: 5050-5059https://doi.org/10.1118/1.4737025
- The characterization of breast anatomical metrics using dedicated breast CT.Med Phys. 2011; 38: 2180-2191https://doi.org/10.1118/1.3567147
- An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.Med Phys. 2018; 45: 2542-2559https://doi.org/10.1002/mp.12920
- Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography.Phys Med. 2018; (51:56–63)https://doi.org/10.1016/j.ejmp.2018.04.392
Arana Peña LM, Fedon C, Garcia E, Diaz O, Longo R, Dance DR, et al. Monte Carlo dose evaluation of different fibroglandular tissue distribution in breast imaging. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th International Workshop on Breast Imaging (IWBI2020); vol. 11513. SPIE; 2020, p. 76. https://dx.doi.org/10.1117/12.2564278.
Geeraert N.. Quantitative evaluation of fibroglandular tissue for estimation of tissue differentiated absorbed energy in breast tomosynthesis. Ph.D. thesis; Télécom ParisTech/TSI; 2014.
Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, et al. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal. 2021;102061. https://doi.org/10.1016/j.media.2021.102061.
- GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept.Phys Med. 2020; 74: 133-142https://doi.org/10.1016/j.ejmp.2020.05.007
- Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast ct data: A patient-based characterization of the breast parenchyma.Med Phys. 2021; 48: 1436-1447https://doi.org/10.1002/mp.14716
- Mammography dose estimates do not reflect any specific patient’s breast dose.Eur J Radiol. 2020; 131https://doi.org/10.1016/j.ejrad.2020.109216
- Breast thickness based DRLs in screening mammography.Phys Med. 2019; 67: 203https://doi.org/10.1016/j.ejmp.2019.09.204
- Reliability of automated breast density measurements.Radiology. 2015; 275: 366-376https://doi.org/10.1148/radiol.15141686
- Breast composition: Measurement and clinical use.Radiography. 2015; 21: 324-333https://doi.org/10.1016/j.radi.2015.06.006
- Vision 20/20: Mammographic breast density and its clinical applications.Med Phys. 2015; 42: 7059-7077https://doi.org/10.1118/1.4935141
- Automated mammographic breast density estimation using a fully convolutional network.Med Phys. 2018; 45: 1178-1190https://doi.org/10.1002/mp.12763
Lizzi F., Laruina F., Oliva P., Retico A., Fantacci M.E. Residual convolutional neural networks to automatically extract significant breast density features. In: Vento M., Percannella G., editors. Computer Analysis of Images and Patterns (CAIP 2019); vol. 1089. 2019, p. 28–35.
- Prediction of reader estimates of mammographic density using convolutional neural networks.J Med Imag. 2019; 6: 1https://doi.org/10.1117/1.jmi.6.3.031405
Warren LM, Harris P, Gomes S, Trumble M, Halling-Brown MD, Dance DR, et al. Deep learning to calculate breast density from processed mammography images. In: Van Ongeval C, Marshall N, Bosmans H, editors. 15th International Workshop on Breast Imaging (IWBI2020); vol. 11513. SPIE; 2020, p. 24. https://dx.doi.org/10.1117/12.2561278.
Maghsoudi O.H., Gastounioti A., Scott C., Pantalone L., Wu F.F., Cohen E.A., et al. Deep-libra: Artificial intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment. 2020. arXiv:2011.08001.
Graff CG. In: Kontos D, Flohr TG, Lo JY, editors. Medical Imaging 2016: Physics of Medical Imaging, 9783. SPIE; 2016. p. 978309. https://dx.doi.org/10.1117/12.2216312.
- Updated breast CT dose coefficients (DgN CT) using patient-derived breast shapes and heterogeneous fibroglandular distributions.Med Phys. 2019; 46: 1455-1466https://doi.org/10.1002/mp.13391
- The effect of skin thickness determined using breast CT on mammographic dosimetry.Med Phys. 2008; 35: 1199-1206https://doi.org/10.1118/1.2841938
- Technical Note: In silico imaging tools from the VICTRE clinical trial.Med Phys. 2019; 46: 3924-3928https://doi.org/10.1002/mp.13674
- FEBio: Finite elements for biomechanics.J Biomech Eng. 2012; 134https://doi.org/10.1115/1.4005694
- Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.Med Phys. 2009; 36: 4878-4880https://doi.org/10.1118/1.3231824
- Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial.JAMA Network Open. 2018; 1e185474https://doi.org/10.1001/jamanetworkopen.2018.5474
- Mammography and breast tomosynthesis simulator for virtual clinical trials.Comput Phys Commun. 2020;; : 107779https://doi.org/10.1016/j.cpc.2020.107779
- Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects.Phys Med Biol. 2010; 55: 4335-4359https://doi.org/10.1088/0031-9155/55/15/010
- X-ray transmission formula for antiscatter grids.Phys Med Biol. 1983; 28: 1429-1433https://doi.org/10.1088/0031-9155/28/12/008
- Digital Mammography. Medical Radiology. Springer, Berlin, Heidelberg2010https://doi.org/10.1007/978-3-540-78450-0
- Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195.Med Phys. 2015; 42: 5679-5691https://doi.org/10.1118/1.4928676
- PENELOPE-2018: A Code System for Monte Carlo Simulations of Electron and Photon Transport.Issy-les-Mounlineaux, OECD/NEA2019https://doi.org/10.1787/32da5043-en
- Absorbed Radiation Dose in Mammography.Radiology. 1979; 130: 485-491https://doi.org/10.1148/130.2.485
- The composition of body tissues.Brit J Radiol. 1986; 59: 1209-1218https://doi.org/10.1259/0007-1285-59-708-1209
- Generation and analysis of clinically relevant breast imaging x-ray spectra.Med Phys. 2017; 44: 2148-2160https://doi.org/10.1002/mp.12222
- Fast calculation of the exact radiological path for a three-dimensional CT array.Med Phys. 1985; 12: 252-255https://doi.org/10.1118/1.595715
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.Nat Methods. 2020; 17: 261-272https://doi.org/10.1038/s41592-019-0686-2
- Gimi B. Krol A. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. 10953. International Society for Optics and Photonics; SPIE, 2019: 453-463https://doi.org/10.1117/12.2512451
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., et al. Pytorch: An imperative style, high-performance deep learning library. In: Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E., Garnett R., editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; 2019, p. 8024–8035.
- Scikit-learn: Machine learning in Python.J Mach Learn Res. 2011; 12 (https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html): 2825-2830
- Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.Med Phys. 2012; 39: 4903-4917https://doi.org/10.1118/1.4736530
- Estimation of glandular dose in mammography based on artificial neural networks.Phys Med Biol. 2020; 65095009https://doi.org/10.1088/1361-6560/ab7a6d
- Accuracy of mammography dosimetry in the era of the European Directive 2013/59/Euratom transposition.Eur J Radiol. 2020; 127108986https://doi.org/10.1016/j.ejrad.2020.108986
- Mean glandular dose in digital mammography: a dose calculation method comparison.J Med Imag. 2017; 4: 13502https://doi.org/10.1117/1.JMI.4.1.013502
- A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry.Comput Meth Prog Bio. 2011; 102: 47-63https://doi.org/10.1016/J.CMPB.2010.11.016
- Objective models of compressed breast shapes undergoing mammography.Med Phys. 2013; 40031902https://doi.org/10.1118/1.4789579
- Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.Med Phys. 2019; 46: 2103-2114https://doi.org/10.1002/mp.13451
- Measurement of compressed breast thickness by optical stereoscopic photogrammetry.Med Phys. 2009; 36: 569-576https://doi.org/10.1118/1.3065066