Highlights
- •An accurate framework for benign-malignant pulmonary nodule classification.
- •The proposed model can capture intra-nodule heterogeneity.
- •The proposed model analyze nodule target and context images simultaneously.
- •The proposed model outperformed conventional deep learning approaches.
Abstract
Purpose
Methods
Results
Conclusion
Graphical abstract

Keywords
Introduction
- Austin J.H.
- Müller N.L.
- Friedman P.J.
- Hansell D.M.
- Naidich D.P.
- Remy-Jardin M.
- et al.
- Liao F.
- Liang M.
- Li Z.
- Hu X.
- Song S.
American college of Radiology. Lung CT screening reporting and data system (Lung-RADS) 2014. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads.
American college of Radiology. Lung CT screening reporting and data system (Lung-RADS) 2014. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads.

Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, IEEE; n.d., p. 886–93. https://doi.org/10.1109/CVPR.2005.177.
- Aerts H.J.W.L.
- Velazquez E.R.
- Leijenaar R.T.H.
- Parmar C.
- Grossmann P.
- Cavalho S.
- et al.
- Chen C.-H.
- Chang C.-K.
- Tu C.-Y.
- Liao W.-C.
- Wu B.-R.
- Chou K.-T.
- et al.
Buty M, Xu Z, Gao M, Bagci U, Wu A, Mollura DJ. Characterization of Lung Nodule Malignancy Using Hybrid Shape and Appearance Features, Springer, Cham; 2016, p. 662–70. https://doi.org/10.1007/978-3-319-46720-7_77.
- Bonavita I.
- Rafael-Palou X.
- Ceresa M.
- Piella G.
- Ribas V.
- González Ballester M.A.
Hussein S, Cao K, Song Q, Bagci U. Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-task Learning, Springer, Cham; 2017, p. 249–60. https://doi.org/10.1007/978-3-319-59050-9_20.
Zhu W, Liu C, Fan W, Xie X. DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. 2018 IEEE Winter Conf. Appl. Comput. Vis., IEEE; 2018, p. 673–81. https://doi.org/10.1109/WACV.2018.00079.
- Lei Y.
- Tian Y.
- Shan H.
- Zhang J.
- Wang G.
- Kalra M.K.
Wu B, Zhou Z, Wang J, Wang Y. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), IEEE; 2018, p. 1109–13. https://doi.org/10.1109/ISBI.2018.8363765.
Kumar D, Wong A, Clausi DA. Lung Nodule Classification Using Deep Features in CT Images. In: 2015 12th Conf. Comput. Robot Vis., IEEE; 2015, p. 133–8. https://doi.org/10.1109/CRV.2015.25.
- Lei Y.
- Tian Y.
- Shan H.
- Zhang J.
- Wang G.
- Kalra M.K.
Material and methods

Patient data
Kaggle, “Data Science Bowl” 2017. https://www.kaggle.com/c/data-science-bowl-2017.
Software Toolkit for Medical Image Analysis. http://mialab.org/.
Image preprocessing
Deep feature extraction
Supervised deep feature extraction
Unsupervised feature extraction
Dong C, Xue T, Wang C. The feature representation ability of variational autoencoder. In: Proc. - 2018 IEEE 3rd Int. Conf. Data Sci. Cyberspace, DSC 2018, Institute of Electrical and Electronics Engineers Inc.; 2018, p. 680–4. https://doi.org/10.1109/DSC.2018.00108.
Wu B, Zhou Z, Wang J, Wang Y. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), IEEE; 2018, p. 1109–13. https://doi.org/10.1109/ISBI.2018.8363765.
Model training
Nodule classification
Results
Baseline Model | Prediction Performance (AUROC) | ||
---|---|---|---|
Target | Context | Dual-pathway | |
VGG | 0.801 [0.777,0.824] | 0.795 [0.774,0.816] | 0.821 [0.794,0.831] |
ResNet | 0.785 [0.756,0.806] | 0.763 [0.740,0.782] | 0.794 [0.771,0.815] |
DenseNet | 0.792 [0.775,0.813] | 0.806 [0.788,0.827] | 0.824 [0.798,0.837] |
EfficientNet | 0.783 [0.759, 0.809] | 0.798 [0.772,0.818] | 0.808 [0.784,0.834] |
Feature Type | Prediction Performance (AUROC) | ||
---|---|---|---|
Target | Context | Dual-pathway | |
VAE | 0.851[0.837,0.866] | 0.868 [0.851, 0.883] | 0.855 [0.839,0.871] |
VGG | 0.898 [0.882,0.913] | 0.917 [0.901,0.928] | 0.920 [0.905,0.934] |
ResNet | 0.902 [0.886,0.917] | 0.903 [0.886,0.918] | 0.909 [0.895,0.923] |
DenseNet | 0.906 [0.890,0.921] | 0.924 [0.908,0.938] | 0.936 [0.921,0.950] |
EfficientNet | 0.905 [0.890,0.919] | 0.927 [0.912,0.940] | 0.931 [0.917, 0.944] |
Feature fractioning
Fraction of Training Features | Feature Set | |
---|---|---|
Unsupervised (VAE) | Supervised (VGG) | |
0.25 | 0.795 [0.779,0.808] | 0.869 [0.852,0.883] |
0.50 | 0.817 [0.801,0.831] | 0.881 [0.866,0.895] |
0.70 | 0.836 [0.823,0.850] | 0.894 [0.880,0.909] |
Feature augmentation effect
Discussion
Yang J, Fang R, Ni B, Li Y, Xu Y, Li L. Probabilistic Radiomics: Ambiguous Diagnosis with Controllable Shape Analysis, Springer, Cham; 2019, p. 658–66. https://doi.org/10.1007/978-3-030-32226-7_73.
Lee H, Hong H, Seong J, Kim JS, Kim J. Treatment Response Prediction of Hepatocellular Carcinoma Patients from Abdominal CT Images with Deep Convolutional Neural Networks, Springer, Cham; 2019, p. 168–76. https://doi.org/10.1007/978-3-030-32281-6_18.
Shen W, Zhou M, Yang F, Yang C, Tian J. Multi-scale Convolutional Neural Networks for Lung Nodule Classification, Springer, Cham; 2015, p. 588–99. https://doi.org/10.1007/978-3-319-19992-4_46.
Liao F, Liang M, Li Z, Hu X, Song S. Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 2017. https://doi.org/10.1109/TNNLS.2019.2892409.
Liao F, Liang M, Li Z, Hu X, Song S. Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 2017. https://doi.org/10.1109/TNNLS.2019.2892409.
Conclusion
Acknowledgement
Appendix A. Supplementary data
- Supplementary Data 1
References
- Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2018; 68: 394-424https://doi.org/10.3322/caac.21492
- Lung Cancer Screening, Springer.Cham. 2016; : 1-23https://doi.org/10.1007/978-3-319-40389-2_1
- Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening.N Engl J Med. 2011; 409: 395https://doi.org/10.1056/NEJMOA1102873
- Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society.Http://DxDoiOrg/101148/Radiology20028685321. 1996; https://doi.org/10.1148/RADIOLOGY.200.2.8685321
- Multi-view multi-scale CNNs for lung nodule type classification from CT images.Pattern Recognit. 2018; 77: 262-275https://doi.org/10.1016/J.PATCOG.2017.12.022
- Lung nodules: A comprehensive review on current approach and management.Ann Thorac Med. 2019; 14: 226-238https://doi.org/10.4103/atm.ATM_110_19
- Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network.IEEE Trans Neural Networks Learn Syst. 2019; 30: 3484-3495https://doi.org/10.1109/TNNLS.2019.2892409
American college of Radiology. Lung CT screening reporting and data system (Lung-RADS) 2014. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads.
- Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the fleischner society.Radiology. 2005; 237: 395-400https://doi.org/10.1148/radiol.2372041887
- Computer-aided classification of lung nodules on computed tomography images via deep learning technique.Onco Targets Ther. 2015; 8: 2015https://doi.org/10.2147/OTT.S80733
- Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification.Pattern Recognit. 2017; 61: 663-673https://doi.org/10.1016/J.PATCOG.2016.05.029
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, IEEE; n.d., p. 886–93. https://doi.org/10.1109/CVPR.2005.177.
- Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.IEEE Trans Pattern Anal Mach Intell. 2002; 24: 971-987https://doi.org/10.1109/TPAMI.2002.1017623
- Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat Commun. 2014; 5https://doi.org/10.1038/ncomms5006
- Radiomic features analysis in computed tomography images of lung nodule classification.PLoS ONE. 2018; 13e0192002https://doi.org/10.1371/journal.pone.0192002
- Radiomics and radiogenomics in lung cancer: A review for the clinician.Lung Cancer. 2018; 115: 34-41https://doi.org/10.1016/J.LUNGCAN.2017.10.015
- Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study.Eur Radiol. 2019; 29: 6100-6108https://doi.org/10.1007/s00330-019-06213-9
- Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method.Phys Med. 2019; 60: 58-65https://doi.org/10.1016/J.EJMP.2019.03.024
- Texture feature analysis for computer-aided diagnosis on pulmonary nodules.J Digit Imaging. 2015; 28: 99-115https://doi.org/10.1007/s10278-014-9718-8
- Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction.Artif Intell Med. 2010; 50: 43-53https://doi.org/10.1016/J.ARTMED.2010.04.011
Buty M, Xu Z, Gao M, Bagci U, Wu A, Mollura DJ. Characterization of Lung Nodule Malignancy Using Hybrid Shape and Appearance Features, Springer, Cham; 2016, p. 662–70. https://doi.org/10.1007/978-3-319-46720-7_77.
- Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline.Comput Methods Programs Biomed. 2020; 185105172https://doi.org/10.1016/j.cmpb.2019.105172
- A survey on deep learning in medical image analysis.Med Image Anal. 2017; 42: 60-88https://doi.org/10.1016/J.MEDIA.2017.07.005
- An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification.Expert Syst Appl. 2019; 128: 84-95https://doi.org/10.1016/j.eswa.2019.01.048
Hussein S, Cao K, Song Q, Bagci U. Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-task Learning, Springer, Cham; 2017, p. 249–60. https://doi.org/10.1007/978-3-319-59050-9_20.
Zhu W, Liu C, Fan W, Xie X. DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. 2018 IEEE Winter Conf. Appl. Comput. Vis., IEEE; 2018, p. 673–81. https://doi.org/10.1109/WACV.2018.00079.
- Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks.IEEE Trans Med Imaging. 2016; 35: 1160-1169https://doi.org/10.1109/TMI.2016.2536809
- Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT.IEEE Trans Med Imaging. 2019; 38: 991-1004https://doi.org/10.1109/TMI.2018.2876510
- Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping.Med Image Anal. 2020; 60101628https://doi.org/10.1016/J.MEDIA.2019.101628
- Semi-supervised adversarial model for benign–malignant lung nodule classification on chest CT.Med Image Anal. 2019; 57: 237-248https://doi.org/10.1016/J.MEDIA.2019.07.004
Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial Autoencoders. ArXiv:151105644 2015.
Wu B, Zhou Z, Wang J, Wang Y. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th Int. Symp. Biomed. Imaging (ISBI 2018), IEEE; 2018, p. 1109–13. https://doi.org/10.1109/ISBI.2018.8363765.
Kumar D, Wong A, Clausi DA. Lung Nodule Classification Using Deep Features in CT Images. In: 2015 12th Conf. Comput. Robot Vis., IEEE; 2015, p. 133–8. https://doi.org/10.1109/CRV.2015.25.
Q.Z. Song L. Zhao X.K. Luo of healthcare Engineering XCD-J, undefined, Using deep learning for classification of lung nodules on computed tomography images J Healthc Eng 2017 2017 2017 10.1155/2017/8314740.
Fakoor R, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. In: Proc. ICML Work. Role Mach. Learn. Transform. Healthc.; 2013.
- Semi-supervised Learning with Ladder Networks. 2015; : 3546-3554
- Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT.Inf Fusion. 2018; 42: 102-110https://doi.org/10.1016/J.INFFUS.2017.10.005
- Highly accurate model for prediction of lung nodule malignancy with CT scans.Sci Rep. 2018; 8: 9286https://doi.org/10.1038/s41598-018-27569-w
- The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans.Med Phys. 2011; 38: 915-931https://doi.org/10.1118/1.3528204
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv:14091556 2015.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: IEEE Conf. Comput. Vis. Pattern Recognit.; 2016.
Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017 2016;2017-January:2261–9.
Tan M, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks. In: 36th Int Conf Mach Learn ICML 2019 2019;2019-June:10691–700.
Kingma DP, Welling M. Auto-Encoding Variational Bayes. ArXiv:13126114 2014.
- SMOTE: synthetic minority over-sampling technique.J Artif Intell Res. 2002; 16: 321-357https://doi.org/10.1613/jair.953
Kaggle, “Data Science Bowl” 2017. https://www.kaggle.com/c/data-science-bowl-2017.
Software Toolkit for Medical Image Analysis. http://mialab.org/.
Dong C, Xue T, Wang C. The feature representation ability of variational autoencoder. In: Proc. - 2018 IEEE 3rd Int. Conf. Data Sci. Cyberspace, DSC 2018, Institute of Electrical and Electronics Engineers Inc.; 2018, p. 680–4. https://doi.org/10.1109/DSC.2018.00108.
- Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.Biometrics. 1988; 44: 837https://doi.org/10.2307/2531595
Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. vol. 12. 2011.
Abadi M, Agarwal A, Bahram P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous systems 2015.
Yang J, Fang R, Ni B, Li Y, Xu Y, Li L. Probabilistic Radiomics: Ambiguous Diagnosis with Controllable Shape Analysis, Springer, Cham; 2019, p. 658–66. https://doi.org/10.1007/978-3-030-32226-7_73.
- Computer-aided diagnosis for lung cancer: usefulness of nodule heterogeneity.Acad Radiol. 2017; 24: 328-336https://doi.org/10.1016/J.ACRA.2016.11.007
Lee H, Hong H, Seong J, Kim JS, Kim J. Treatment Response Prediction of Hepatocellular Carcinoma Patients from Abdominal CT Images with Deep Convolutional Neural Networks, Springer, Cham; 2019, p. 168–76. https://doi.org/10.1007/978-3-030-32281-6_18.
Shen W, Zhou M, Yang F, Yang C, Tian J. Multi-scale Convolutional Neural Networks for Lung Nodule Classification, Springer, Cham; 2015, p. 588–99. https://doi.org/10.1007/978-3-319-19992-4_46.
Liao F, Liang M, Li Z, Hu X, Song S. Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 2017. https://doi.org/10.1109/TNNLS.2019.2892409.
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy