Advertisement

Improved visualization of X-ray phase contrast volumetric data through artifact-free integrated differential images

Published:April 17, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.024

      Highlights

      • Differential X-ray phase contrast images are affected by stripes when integrated.
      • Iterative integration prevents stripes but is too slow for large CT datasets.
      • Wiener-based integration is fast and can integrate X-ray phase contrast CT datasets

      Abstract

      Artifacts arising when differential phase images are integrated is a common problem to several X-ray phase-based experimental techniques. The combination of noise and insufficient sampling of the high-frequency differential phase signal leads to the formation of streak artifacts in the projections, translating into poor image quality in the tomography slices. In this work, we apply a non-iterative integration algorithm proven to reduce streak artifacts in planar (2D) images to a differential phase tomography scan. We report on how the reduction of streak artifacts in the projections improves the quality of the tomography slices, especially in the directions different from the reconstruction plane. Importantly, the method is compatible with large tomography datasets in terms of computation time.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olivo A.
        • Speller R.
        A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources.
        Appl Phys Lett. 2007; 91074106
      1. Massimi L, Hagen CK, Endrizzi M, Munro PR, Havariyoun G, Hawker PS, Smit B, et al., Laboratory-based x-ray phase contrast ct technology for clinical intra-operative specimen imaging. In: Medical Imaging 2019: Physics of Medical Imaging, Vol. 10948, International Society for Optics and Photonics, 2019, p. 109481R.

        • Pfeiffer F.
        • Weitkamp T.
        • Bunk O.
        • David C.
        Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources.
        Nat Phys. 2006; 2: 258-261
        • Meinel F.G.
        • Schwab F.
        • Yaroshenko A.
        • Velroyen A.
        • Bech M.
        • Hellbach K.
        • Fuchs J.
        • Stiewe T.
        • Yildirim A.Ö.
        • Bamberg F.
        • et al.
        Lung tumors on multimodal radiographs derived from grating-based x-ray imaging–a feasibility study.
        Physica Med. 2014; 30: 352-357
        • Mihailidis D.
        Computed tomography from photon statistics to modern cone-beam ct.
        Med Phys. 2009; 36: 3858
        • Kallon G.K.
        • Wesolowski M.
        • Vittoria F.A.
        • Endrizzi M.
        • Basta D.
        • Millard T.P.
        • Diemoz P.C.
        • Olivo A.
        A laboratory based edge-illumination x-ray phase-contrast imaging setup with two-directional sensitivity.
        Appl Phys Lett. 2015; 107204105
        • Thüring T.
        • Modregger P.
        • Pinzer B.R.
        • Wang Z.
        • Stampanoni M.
        Non-linear regularized phase retrieval for unidirectional x-ray differential phase contrast radiography.
        Opt Exp. 2011; 19: 25545-25558
        • Sperl J.I.
        • Bequé D.
        • Kudielka G.P.
        • Mahdi K.
        • Edic P.M.
        • Cozzini C.
        A fourier-domain algorithm for total-variation regularized phase retrieval in differential x-ray phase contrast imaging.
        Opt Exp. 2014; 22: 450-462
        • Nilchian M.
        • Wang Z.
        • Thuering T.
        • Unser M.
        • Stampanoni M.
        Spline based iterative phase retrieval algorithm for x-ray differential phase contrast radiography.
        Opt Exp. 2015; 23: 10631-10642
        • Massimi L.
        • Buchanan I.
        • Astolfo A.
        • Endrizzi M.
        • Olivo A.
        Fast, non-iterative algorithm for quantitative integration of x-ray differential phase-contrast images.
        Opt Exp. 2020; 28: 39677-39687
        • Van Munster E.
        • Van Vliet L.
        • Aten J.
        Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference contrast microscope.
        J Microsc. 1997; 188: 149-157
        • Vaseghi S.V.
        Advanced digital signal processing and noise reduction.
        John Wiley & Sons, 2008
        • Raven C.
        Numerical removal of ring artifacts in microtomography.
        Rev Sci Instr. 1998; 69: 2978-2980
        • Arnison M.
        • Cogswell C.
        • Smith N.
        • Fekete P.
        • Larkin K.
        Using the hilbert transform for 3d visualization of differential interference contrast microscope images.
        J Microsc. 2000; 199: 79-84
        • Endrizzi M.
        • Olivo A.
        Absorption, refraction and scattering retrieval with an edge-illumination-based imaging setup.
        J Phys D: Appl Phys. 2014; 47505102
        • Ignatyev K.
        • Munro P.
        • Speller R.
        • Olivo A.
        Effects of signal diffusion on x-ray phase contrast images.
        Rev Sci Instrum. 2011; 82073702
        • Diemoz P.C.
        • Vittoria F.A.
        • Olivo A.
        Spatial resolution of edge illumination x-ray phase-contrast imaging.
        Opt Exp. 2014; 22: 15514-15529
        • Totonelli G.
        • Maghsoudlou P.
        • Georgiades F.
        • Garriboli M.
        • Koshy K.
        • Turmaine M.
        • Ashworth M.
        • Sebire N.J.
        • Pierro A.
        • Eaton S.
        • et al.
        Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration.
        Pediat Surgery Int. 2013; 29: 87-95
        • Urbani L.
        • Camilli C.
        • Phylactopoulos D.-E.
        • Crowley C.
        • Natarajan D.
        • Scottoni F.
        • Maghsoudlou P.
        • McCann C.J.
        • Pellegata A.F.
        • Urciuolo A.
        • et al.
        Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors.
        Nat Commun. 2018; 9: 1-16