Highlights
- •Evaluation of DWI changes in white matter after proton therapy.
- •Significant diffusion changes were found in high-dose regions.
- •Linear-mixed models unveiled significant dependencies of ADC on dose and time.
- •Perfusion-related parameters presented mixed results.
- •Diffusion restriction may characterize radiation-induced cellular injury.
Abstract
Purpose
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- The physics of proton therapy.Phys Med Biol. 2015; 60: R155-R209https://doi.org/10.1088/0031-9155/60/8/R155
- Proton radiobiology.Cancers (Basel). 2015; 7: 353-381https://doi.org/10.3390/cancers7010353
- Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer.Phys Med Biol. 2014; 59: R419-R472https://doi.org/10.1088/0031-9155/59/22/R419
- Increasing the power of tumour control and normal tissue complication probability modelling in radiotherapy: recent trends and current issues.Transl Cancer Res. 2017; 6: S807-S821https://doi.org/10.21037/tcr.2017.06.03
- Charged-particle therapy in cancer: clinical uses and future perspectives.Nat Rev Clin Oncol. 2017; 14: 483-495https://doi.org/10.1038/nrclinonc.2017.30
- Robust radiotherapy planning.Phys Med Biol. 2018; 63: 22TR02https://doi.org/10.1088/1361-6560/aae659
- Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults.Neur Oncol. 2018; 20: 597-607https://doi.org/10.1093/neuonc/nox195
- Neurologic Complications of Cranial Radiation Therapy and Strategies to Prevent or Reduce Radiation Toxicity.Curr Neurol Neurosci Rep. 2020; 20https://doi.org/10.1007/s11910-020-01051-5
- Radiation-induced brain injury: A review.Front Oncol. 2012; 2: 1-18https://doi.org/10.3389/fonc.2012.00073
- Practice patterns of image guided particle therapy in Europe: A 2016 survey of the European Particle Therapy Network (EPTN), Radiother.Oncology. 2018; 128: 4-8https://doi.org/10.1016/j.radonc.2018.03.017
- Regional susceptibility to dose-dependent white matter damage after brain radiotherapy.Radiother Oncol. 2017; 123: 209-217https://doi.org/10.1016/j.radonc.2017.04.006
- Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy.Radiother Oncol. 2019; 140: 110-115https://doi.org/10.1016/j.radonc.2019.06.022
- Medical physics challenges in clinical mr-guided radiotherapy.Radiat Oncol. 2020; 15: 1-16https://doi.org/10.1186/s13014-020-01524-4
- MR-guided proton therapy: a review and a preview.Radiat Oncol. 2020; 15: 1-13https://doi.org/10.1186/s13014-020-01571-x
- Quantitative imaging for radiotherapy purposes.Radioth Oncol. 2020; 146: 66-75https://doi.org/10.1016/j.radonc.2020.01.026
- The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis.PloS one. 2013; 8https://doi.org/10.1371/journal.pone.0079008
- What can we see with IVIM MRI?.Neuroimage. 2019; 187: 56-67https://doi.org/10.1016/j.neuroimage.2017.12.062
- Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with Dynamic Susceptibility Contrast and IntraVoxel Incoherent Motion MRI.Magn Reson Imaging. 2020; 67: 69-78https://doi.org/10.1016/j.mri.2019.12.003
- Effect of intravoxel incoherent motion on diffusion parameters in normal brain.NeuroImage. 2020; 204 (116228)https://doi.org/10.1016/j.neuroimage.2019.116228
- Integration of Diffusion Magnetic Resonance Tractography into tomotherapy radiation treatment planning for high-grade gliomas.Phys Med. 2018; 55: 127-134https://doi.org/10.1016/j.ejmp.2018.10.004
- Imaging brain microstructure with diffusion MRI: Practicality and applications.NMR Biomed. 2017; : 1-26https://doi.org/10.1002/nbm.3841
- Multi-component diffusion characterization of radiation-induced white matter damage.Med Phys. 2017; 44: 1747-1754https://doi.org/10.1002/mp.12170
- Photon vs. proton radiochemotherapy: Effects on brain tissue volume and perfusion.Radiother Oncol. 2018; 128: 121-127https://doi.org/10.1016/j.radonc.2017.11.033
- Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers.Int J Part Ther. 2018; 5: 15-24https://doi.org/10.14338/IJPT-18-00018.1
- Quantitative Measurement of Brain Perfusion with Intravoxel Incoherent Motion MR Imaging.Radiology. 2012; 265: 874-881https://doi.org/10.1148/radiol.12120584
- Dependence of apparent diffusion coefficient measurement on diffusion gradient direction and spatial position - A quality assurance intercomparison study of forty-four scanners for quantitative diffusion-weighted imaging.Phys Med. 2018; 55: 135-141https://doi.org/10.1016/j.ejmp.2018.09.007
- Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCEGÇÉMRI derived biomarkers in multicenter oncology trials.J Magn Reson Imaging. 2019; 49: e101-e121https://doi.org/10.1002/jmri.26518
QIBA Diffusion Weighted Imaging (DWI) MR Biomarker, QIBA Profile: Diffusion-Weighted Magnetic Resonance Imaging (DWI), 2019. https://qibawiki.rsna.org/.
Sharp GC, Li R, Wolfgang J, Chen G, Peroni M, Spadea MF, et al. Plastimatch: an open source software suite for radiotherapy image processing. In: Proceedings of the XVIGÇÖth International Conference on the use of Computers in Radiotherapy (ICCR), Amsterdam, Netherlands, 2010.
Yushkevich PA, Gao Y, Gerig G. Itk-snap: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016, pp. 3342–3345.
- Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation.Magn Resonan Imaging. 2014; 32: 913-923https://doi.org/10.1016/j.mri.2014.03.010
- Fitting Linear Mixed-Effects Models Using lme4.J Stat Softw. 2015; 67 (arXiv:1406.5823)https://doi.org/10.18637/jss.v067.i01
- The application of REML in clinical trials.Stat Med. 1994; 13: 1601-1617https://doi.org/10.1002/sim.4780131602
- Brain tumour post-treatment imaging and treatment-related complications.Insights Imaging. 2018; 9: 1057-1075https://doi.org/10.1007/s13244-018-0661-y
- Use, misuse, and abuse of apparent diffusion coefficients.Concepts Magn Reson A. 2010; 36A: 24-35https://doi.org/10.1002/cmr.a.20152
- Intravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up Call.Radiology. 2008; 249: 748-752https://doi.org/10.1148/radiol.2493081301
- Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence.NMR Biomed. 2017; 30 (e3780)https://doi.org/10.1002/nbm.3780
- Dose-dependent white matter damage after brain radiotherapy.Radiother Oncol. 2016; 121: 209-216https://doi.org/10.1016/j.radonc.2016.10.003
Kłos J, van Laar PJ, Sinnige PF, Enting RH, Kramer MC, van der Weide HL, et al. Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques, Radiother Oncol 2019;140:41–53. Doi: https://doi.org/10.1016/j.radonc.2019.05.020. https://www.thegreenjournal.com/article/S0167-8140(19)32921-4/fulltext.
- Gender Differences in White Matter Microstructure.PLoS One. 2012; 7 (e38272)https://doi.org/10.1371/journal.pone.0038272
- Patient-specific validation of deformable image registration in radiation therapy: Overview and caveats.Med Phys. 2018; 45: e908-e922https://doi.org/10.1002/mp.13162
- A novel framework for spatial normalization of dose distributions in voxel-based analyses of brain irradiation outcomes.Phys Med. 2020; 69: 164-169https://doi.org/10.1016/j.ejmp.2019.12.017
- Voxel-based analysis in radiation oncology: A methodological cookbook.Phys Med. 2020; 69: 192-204https://doi.org/10.1016/j.ejmp.2019.12.013
- Brain irradiation leads to persistent neuroinflammation and long-term neurocognitive dysfunction in a region-specific manner.Prog Neuro-Psychopharmacol Biol Psychiatry. 2020; 102 (109954)https://doi.org/10.1016/j.pnpbp.2020.109954
- Neurocognitive function and quality of life after proton beam therapy for brain tumour patients.Radiother Oncol. 2020; 143: 108-116https://doi.org/10.1016/j.radonc.2019.12.024
- Normal tissue complication probability (NTCP) models for modern radiation therapy.Semin Oncol. 2019; 46: 210-218https://doi.org/10.1053/j.seminoncol.2019.07.006
- Combining clinical and dosimetric features in a pbs proton therapy cohort to develop a ntcp model for radiation-induced optic neuropathy.Int J Radiat Oncol Biol Phys. 2021; https://doi.org/10.1016/j.ijrobp.2020.12.052