Advertisement

Distal edge determination precision for a multi-slat prompt-gamma camera: A comprehensive simulation and optimization of the detection system

Published:April 18, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.028

      Highlights

      • Comprehensive simulation of MSPG camera including optical photons.
      • Distal edge position determination is based on analysis of signal waveforms.
      • Camera is optimized for highest possible precision in the computed edge position.
      • Precision of 2 mm (full width half maximum) in the edge position is reached.

      Abstract

      Multi-slat prompt-gamma camera is a promising tool for range monitoring during proton therapy. We report the results of a comprehensive simulation study analyzing the precision which is possible to reach with this camera in determination of the position of the distal edge of the Bragg peak. For the first time we include simulation of optical photons. The proton beam (single pencil beam, 130 MeV, 10 ns bunch period, total of 1·108 protons) is interacting with a polymethyl methacrylate (PMMA) phantom, which is a cylinder of 200 mm in diameter and length. The prompt gamma rays generated in the phantom are collimated with a multi-slat collimator and detected using a combination of yttrium aluminum perovskite (YAP) scintillators, installed in the collimator apertures, and light sensors. Two scintillator packing schemes, with one and with two scintillator plates per aperture, are considered. The collimator configuration (the septal thickness, aperture and height), resulting in the best precision, is determined using two methods of detector optimization. Precision of 2.1 mm (full width at half maximum) in the edge position determination is demonstrated.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wilson R.R.
        Radiological use of fast protons.
        Radiology. 1946; 47: 487-491https://doi.org/10.1148/47.5.487
        • Knopf A.C.
        • Lomax A.
        In vivo proton range verification: a review.
        Phys Med Biol. 2013; 58: R131-R160https://doi.org/10.1088/0031-9155/58/15/R131
        • Loeffler J.S.
        • Durante M.
        Charged particle therapy—optimization, challenges and future directions.
        Nature Rev Clin Oncol. 2013; 10: 411-424https://doi.org/10.1038/nrclinonc.2013.79
        • Enghardt W.
        • Crespo P.
        • Fiedler F.
        • Hinz R.
        • Parodi K.
        • Pawelke J.
        • et al.
        Charged hadron tumour therapy monitoring by means of PET.
        NIM A. 2004; 525: 284-288https://doi.org/10.1016/j.nima.2004.03.128
        • Min C.H.
        • Kim C.H.
        • Youn M.Y.
        • Kim J.W.
        Prompt gamma measurements for locating the dose falloff region in the proton therapy.
        Appl Phys Lett. 2006; 89: 183517-183523https://doi.org/10.1063/1.2378561
        • Knopf A.
        • Parodi K.
        • Bortfeld T.
        • Shih H.A.
        • Paganetti H.
        Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans.
        Phys Med Biol. 2009; 54: 4477-4485https://doi.org/10.1088/0031-9155/54/14/008
        • Hueso-Gonzales F.
        • Enghardt W.
        • Fiedler F.
        • Golnik C.
        • Janssens G.
        • Petzoldt J.
        • et al.
        First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility.
        Phys Med Biol. 2015; 60: 6247-6272https://doi.org/10.1088/0031-9155/60/16/6247
        • Verburg J.M.
        • Seco J.
        Proton range verification through prompt gamma-ray spectroscopy.
        Phys Med Biol. 2014; 59: 7089-7106https://doi.org/10.1088/0031-9155/59/23/7089
        • Peterson S.W.
        • Robertson D.
        • Polf J.
        Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy.
        Phys Med Biol. 2010; 55: 6841-6856https://doi.org/10.1088/0031-9155/55/22/015
      1. Gillam JE, Torres-Espallardo I, Lacasta C, Llosa G, Barrio J, Stankova V, Solaz C, Rafecas M. Hodoscope Coincidence Imaging for Hadron Therapy Using a Compton Camera. IEEE Nuclear Science Symposium Conference Record. 2011; MICI5.S-308 https://doi.org/10.1109/NSSMIC.2011.6152645.

        • Kim D.
        • Yim H.
        • Kim J.W.
        Pinhole Camera Measurements of Prompt Gamma-rays for Detection of Beam Range Variation in Proton Therapy.
        J Korean Phys Soc. 2009; 55: 1673-1676https://doi.org/10.3938/jkps.55.1673
        • Bom V.
        • Joulaeizadeh L.
        • Beekman F.
        Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit.
        Phys Med Biol. 2012; 57: 297-308https://doi.org/10.1088/0031-9155/57/2/297
        • Richter C.
        • Pausch G.
        • Barczyk S.
        • Priegnitz M.
        • Keitz I.
        • Thiele J.
        • et al.
        First clinical application of a prompt gamma based in vivo proton range verification system.
        Radiother Oncol. 2016; 118: 232-237https://doi.org/10.1016/j.radonc.2016.01.004
      2. Diblen F, Espana S, Van Holen R, Vandenberghe S. Detector design for range monitoring in hadron therapy by means of image reconstruction. IEEE Nuclear Science Symposium and Medical Imaging Conference Record. 2012; M22-22 https://doi.org/10.1109/NSSMIC.2012.6551891.

        • Testa M.
        • Bajard M.
        • Chevallier M.
        • Dauvergne D.
        • Freud N.
        • Henriquet P.
        • et al.
        Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection.
        Radiat Environ Biophys. 2010; 49: 337-343https://doi.org/10.1007/s00411-010-0276-2
        • Roellinghoff F.
        • Benilov A.
        • Dauvergne D.
        • Dedes G.
        • Freud N.
        • Janssens G.
        • et al.
        Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera.
        Phys Med Biol. 2014; 59: 1327-1338https://doi.org/10.1088/0031-9155/59/5/1327
      3. Min CH, Lee HR, Kim CH, Lee SB. Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy. Med Phys. 2012; 39: 2100-7 https://pubmed.ncbi.nlm.nih.gov/22482631 (doi: 10.1118/1.3694098 - seems to be broken).

      4. Cambraia Lopes P, Pinto M, Simões H, Biegun AK, Dendooven P, Oxley DC, Parodi K, Schaart DR, Crespo P. Optimization of collimator designs for realtime proton range verification by measuring prompt gamma rays. Nuclear Science Symposium and Medical Imaging Conference Record. 2012; p. 3864 https://doi.org/10.1109/NSSMIC.2012.6551886.

        • Lee H.R.
        • Park J.H.
        • Kim C.H.
        • Min C.H.
        Design optimization of a 2D prompt-gamma measurement system for proton dose verification.
        J Korean Phys Soc. 2012; 61: 239-242https://doi.org/10.3938/jkps.61.239
        • Lin H.H.
        • Chang H.T.
        • Chao T.C.
        • Chuang K.S.
        A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy.
        Rad Phys Chem. 2017; 137: 144-150https://doi.org/10.1016/j.radphyschem.2016.04.020
        • Pausch G.
        • Berthold J.
        • Enghardt W.
        • Römer K.
        • Straessner A.
        • Wagner A.
        • et al.
        Detection systems for range monitoring in proton therapy: Needs and challenges.
        NIM A. 2020; 954161227https://doi.org/10.1016/j.nima.2018.09.062
        • Cambraia Lopes P.
        • Crespo P.
        • Simões H.
        • Ferreira Marques R.
        • Parodi K.
        • Schaart D.R.
        Simulation of proton range monitoring in an anthropomorphic phantom using multi-slat collimators and time-of-flight detection of prompt-gamma quanta.
        Phys Med. 2018; 54: 1-14https://doi.org/10.1016/j.ejmp.2018.09.001
        • Moszynski M.
        • Kapusta M.
        • Wolski D.
        • Klamra W.
        • Cederwall B.
        Properties of the YAP : Ce scintillator.
        NIM A. 1998; 404: 157-165https://doi.org/10.1016/S0168-9002(97)01115-7
        • Agostinelli S.
        • et al.
        Geant4—a simulation toolkit.
        NIM A. 2003; 506: 250-303https://doi.org/10.1016/S0168-9002(03)01368-8
        • Allison J.
        • et al.
        Geant4 developments and applications.
        IEEE Trans Nuc Sci. 2006; 53: 270-278https://doi.org/10.1109/TNS.2006.869826
        • Allison J.
        • et al.
        Recent developments in Geant4.
        NIM A. 2016; 835: 186-225https://doi.org/10.1016/j.nima.2016.06.125
        • Morozov A.
        • Solovov V.
        • Martins R.
        • Neves F.
        • Domingos V.
        • Chepel V.
        ANTS2 package: simulation and experimental data processing for Anger camera type detectors.
        JINST. 2016; 11: P04022https://doi.org/10.1088/1748-0221/11/04/P04022
        • Smeets J.
        • Roellinghoff F.
        • Prieels D.
        • Stichelbaut F.
        • Benilov A.
        • Busca P.
        • et al.
        Prompt gamma imaging with a slit camera for real-time range control in proton therapy.
        Phys Med Biol. 2012; 57: 3371-3405https://doi.org/10.1088/0031-9155/57/11/3371
        • Baccaro S.
        • Cecilia A.
        • Montecchi M.
        • Malatesta T.
        • de Notaristefani F.
        • Torrioli S.
        • et al.
        Refractive index and absorption length of YAP: Ce scintillation crystal and reflectance of the coating used in YAP : Ce single-crystal matrix.
        NIM A. 1998; 406: 479-485https://doi.org/10.1016/S0168-9002(97)01181-9
        • Baryshevsky V.
        • Korzhik M.
        • Moroz V.I.
        • Pavlenko V.
        • Fyodorov A.
        • Smirnova S.A.
        • et al.
        YAlO3:Ce-fast-acting scintillators for detection of ionizing radiation.
        NIM B. 1991; 58: 291-293https://doi.org/10.1016/0168-583X(91)95605-D
      5. Newport technical data, refractive index of epoxies in the visible spectrum. Resin “8”. https://www.gratinglab.com/Information/Technical_Data/Vis_Index.pdf; 2021 [accessed 22 March 2021].

        • Yang M.K.
        • French R.H.
        • Tokarsky E.W.
        Optical properties of Teflon® AF amorphous fluoropolymers.
        J Micro/Nanolithography, MEMS, MOEMS. 2008; 7033010https://doi.org/10.1117/1.2965541
      6. Hamamatsu photonics. Data sheet for S8664-55 (short wavelength type APD), https://www.hamamatsu.com/resources/pdf/ssd/s8664_series_kapd1012e.pdf; 2021 [accessed 22 March 2021].

        • Neves F.
        • Lindote A.
        • Morozov A.
        • Solovov V.
        • Silva C.
        • Bras P.
        • et al.
        Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon.
        JINST. 2017; 12: P01017https://doi.org/10.1088/1748-0221/12/01/P01017
        • Janecek M.
        Reflectivity spectra for commonly used reflectors.
        IEEE Trans Nuc Sci. 2012; 59: 490-497https://doi.org/10.1109/TNS.2012.2183385
        • Morozov A.
        • Margato L.M.S.
        • Stefanescu I.
        Simulation-based optimization of a multilayer 10B-RPC thermal neutron detector.
        JINST. 2020; 15: P03019https://doi.org/10.1088/1748-0221/15/03/P03019
      7. Navigator cluster, Laboratory for Advanced Computing, University of Coimbra, https://www.uc.pt/lca; 2021 [accessed 22 March 2021].

        • Robert C.
        • Dedes G.
        • Battistoni G.
        • Böhlen T.T.
        • Buvat I.
        • Cerutti F.
        • et al.
        Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes.
        Phys Med Biol. 2013; 58: 2879-2899https://doi.org/10.1088/0031-9155/58/9/2879
        • Bohlen T.T.
        • Cerutti F.
        • Chin M.P.W.
        • Fassò A.
        • Ferrari A.
        • Ortega P.G.
        • et al.
        The FLUKA Code: Developments and Challenges for High Energy and Medical Applications.
        Nucl Data Sheets. 2014; 120: 211-214https://doi.org/10.1016/j.nds.2014.07.049