Advertisement

Monte Carlo determination of a nanoDot OSLD response using quality index for diagnostic kilovoltage X-ray beams

Published:April 19, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.031

      Highlights

      • Energy response of nanoDot OSLDs was investigated for diagnostic X-ray beams.
      • NanoDot response in free air for monoenergetic photon beams was 3.6 at 25–30 keV.
      • NanoDot response differed by 6% for QIs 0.4–0.6 for the same HVL.
      • Surface dose estimated with nanoDot agreed with chamber measurement by less than 2%.
      • NanoDopt responses exhibited good correlation with HVL for specified QIs.

      Abstract

      Purpose

      This study aims to investigate the energy response of an optically stimulated luminescent dosimeter known as nanoDot for diagnostic kilovoltage X-ray beams via Monte Carlo calculations.

      Methods

      The nanoDot response is calculated as a function of X-ray beam quality in free air and on a water phantom surface using Monte Carlo simulations. The X-ray fluence spectra are classified using the quality index (QI), which is defined as the ratio of the effective energy to the maximum energy of the photons. The response is calculated for X-ray fluence spectra with QIs of 0.4, 0.5, and 0.6 with tube voltages of 50–137.6 kVp and monoenergetic photon beams. The surface dose estimated using the calculated response is verified by comparing it with that measured using an ionization chamber.

      Results

      The nanoDot response in free air for monoenergetic photon beams (QI = 1.0) varies significantly at photon energies below 100 keV and reaches a factor of 3.6 at 25–30 keV. The response differs by up to approximately 6% between QIs of 0.4 and 0.6 for the same half-value layer (HVL). The response at the phantom surface decreases slightly owing to the backscatter effect, and it is almost independent of the field size. The agreement between the surface dose estimated using the nanoDot and that measured using the ionization chamber for assessing X-ray beam qualities is less than 2%.

      Conclusions

      The nanoDot response is indicated as a function of HVL for the specified QIs, and it enables the direct surface dose measurement.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kry S.F.
        • Alvarez P.
        • Cygler J.E.
        • DeWerd L.A.
        • Howell R.M.
        • Meeks S.
        • et al.
        AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs.
        Med Phys. 2019; 47 (Epub 2019 Dec 6): e19-e51https://doi.org/10.1002/mp.13839
        • Yusof F.H.
        • Ung N.M.
        • Wong J.H.D.
        • Jong W.L.
        • Ath V.
        • Phua V.C.
        • et al.
        On the use of optically stimulated luminescent dosimeter for surface dose measurement during radiotherapy.
        PLoS One. 2015; 10: 1-15https://doi.org/10.1371/journal.pone.0128544
        • Sharma R.
        • Jursinic P.A.
        In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters.
        Med Phys. 2013; 40071730https://doi.org/10.1118/1.4811143
        • Loughery B.
        • Knill C.
        • Silverstein E.
        • Zakjevskii V.
        • Masi K.
        • Covington E.
        • et al.
        Multi-institutional evaluation of end-to-end protocol for IMRT/VMAT treatment chains utilizing conventional linacs.
        Med Dosim. 2019; 44: 61-66https://doi.org/10.1016/j.meddos.2018.02.002
        • Lye J.
        • Dunn L.
        • Kenny J.
        • Lehmann J.
        • Kron T.
        • Oliver C.
        • et al.
        Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters.
        Med Phys. 2014; 41032102https://doi.org/10.1118/1.4865786
        • Alves A.D.C.
        • Lye J.
        • Kenny J.
        • Dunn L.
        • Lehmann J.
        • Cole A.
        • et al.
        Long term OSLD reader stability in the ACDS level one audit.
        Aust Phys Eng Sci Med. 2015; 38: 151-156https://doi.org/10.1007/s13246-014-0320-7
        • Alvarez P.
        • Kry S.F.
        • Stingo F.
        • Followill D.
        TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.
        Radiat Meas. 2017; 106: 412-415https://doi.org/10.1016/j.radmeas.2017.01.005
        • Hoshida K.
        • Araki F.
        • Ohno T.
        • Kobayashi I.
        Response of a nanoDot OSLD system in megavoltage photon beams.
        Phys Med. 2019; 64: 74-80https://doi.org/10.1016/j.ejmp.2019.06.014
        • Dunn L.
        • Lye J.
        • Kenny J.
        • et al.
        Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy.
        Radiat Meas. 2013; 51: 31-39https://doi.org/10.1016/j.radmeas.2013.01.012
        • Kerns J.R.
        • Kry S.F.
        • Sahoo N.
        • Followill D.S.
        • Ibbott G.S.
        Angular dependence of the nanoDot OSL dosimeter.
        Med Phys. 2011; 38: 3955-3962https://doi.org/10.1118/1.3596533
        • Lehmann J.
        • Dunn L.
        • Lye J.E.
        • Kenny J.W.
        • Alves A.D.
        • Cole A.
        • et al.
        Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams.
        Med Phys. 2014; 4061712https://doi.org/10.1118/1.4875698
        • Jursinic P.A.
        Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries.
        Med Phys. 2015; 42: 5633-5641https://doi.org/10.1118/1.4929558
        • Agyingi E.O.
        • Mobit P.N.
        • Sandison G.A.
        Energy response of an aluminium oxide detector in kilovoltage and megavoltage photon beams: an EGSnrc Monte Carlo simulation study.
        Radiat Prot Dosim. 2006; 118: 28-31https://doi.org/10.1093/rpd/nci329
        • Reft C.S.
        The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams.
        Med Phys. 2009; 36: 1690-1699https://doi.org/10.1118/1.3097283/
        • Jursinic P.A.
        Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose.
        Med Phys. 2010; 37: 132-140https://doi.org/10.1118/1.3267489
        • Al-Senan R.M.
        • Hatab M.R.
        Characteristics of an OSLD in the diagnostic energy range.
        Med Phys. 2011; 38: 4396-4405https://doi.org/10.1118/1.3602456
        • Takegami K.
        • Hayashi H.
        • Okino H.
        • Kimoto N.
        • Maehara I.
        • Kanazawa Y.
        • et al.
        Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region.
        Radiol Phys Technol. 2015; 8: 286-294https://doi.org/10.1007/s12194-015-0318-1
        • Okazaki T.
        • Hayashi H.
        • Takegami K.
        • Okino H.
        • Kimoto N.
        • Maehara I.
        • et al.
        Fundamental study of nanoDot OSL dosimeters for entrance skin dose measurement in diagnostic X-ray examination.
        J Radiat Prot Res. 2016; 41: 229-236https://doi.org/10.14407/jrpr.2016.41.3.229
        • Gasparian P.
        • Vanhavere F.
        • Yukihara E.
        Evaluating the influence of experimental conditions on the photon energy response of Al2O3: C optically stimulated luminescence detectors.
        Radiat Meas. 2012; 47: 243-249https://doi.org/10.1016/j.radmeas.2012.01.012
        • Scarboro S.B.
        • Kry S.F.
        Characterisation of energy response of Al2O3: C optically stimulated luminescent dosemeters (OSLDs) using cavity theory.
        Radiat Prot Dosim. 2013; 153: 23-31https://doi.org/10.1093/rpd/ncs086
        • Takegami K.
        • Hayashi H.
        • Okino H.
        • Kimoto N.
        • Maehara I.
        • Kanazawa Y.
        • et al.
        Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.
        Radiol Phys Technol. 2016; 9: 99-108https://doi.org/10.1007/s12194-015-0339-9
        • Scarboro S.B.
        • Cody D.
        • Alvarez P.
        • Followill D.
        • Court L.
        • Stingo F.C.
        • et al.
        Characterization of the nanoDot OSLD dosimeter in CT.
        Med Phys. 2015; 42: 1797-1807https://doi.org/10.1118/1.4914398
        • Musa Y.
        • Hashim S.
        • Khalis M.
        • Karim A.
        Direct and indirect entrance surface dose measurement in X-ray diagnostics using nanoDot OSL dosimeter.
        J Phys: Conf Ser. 2019; 1248012014https://doi.org/10.1088/1742-6596/1248/1/012014
        • Takegami K.
        • Hayashi H.
        • Yamada K.
        • Mihara Y.
        • Kimoto N.
        • Kanazawa Y.
        • et al.
        Entrance surface dose measurements using a small OSL dosimeter with a computed tomography scanner having 320 rows of detectors.
        Radiol Phys Technol. 2017; 10: 49-59https://doi.org/10.1007/s12194-016-0366-1
        • Ito H.
        • Kobayashi I.
        • Watanabe K.
        • Ochi S.
        • Yanagawa N.
        Evaluation of scattered radiation from fluoroscopy using small OSL dosimeters.
        Radiol Phys Technol. 2019; 12: 393-400https://doi.org/10.1007/s12194-019-00536-4
        • Kurosawa T.
        • Takata N.
        Estimation of electron loss and photon scattering corrections for parallel plate free air chambers.
        J Nucl Sci Technol. 2005; 42: 1077-1080https://doi.org/10.1080/18811248.2005.9711060
        • Ryuki T.
        • Fujio A.
        Determination of backscatter factors based on the quality index for diagnostic kilovoltage X-ray beams.
        Phys Med. 2020; 77: 48-53https://doi.org/10.1016/j.ejmp. 2020.07.032
        • Andreo P.
        Data for the dosimetry of low- and medium-energy kV X-rays.
        Phys Med Biol. 2019; 64https://doi.org/10.1088/1361-6560/ab421d
        • Thistlethwaite J.
        • Johnson D.
        • Valentino D.J.
        MicroSTARiiTM – a new system for medical dosimetry; Part 1: technology and initial performance.
        LANDAUER Technology Whitepaper, 2013
        • Kawrakow I.
        Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version.
        Med Phys. 2000; 27: 485-498https://doi.org/10.1118/1.598917
        • Kawrakow I.
        • Mainegra-Hing E.
        • Rogers D.W.
        • Tessier F.
        • Walters B.R.
        The EGSnrc code system: Monte Carlo simulation of electron and photon transport.
        National Research Council of Canada, 2020 (Report PIRS-701)
        • Kawrakow I.
        • Mainegra-Hing E.
        • Tessier F.
        • Townson R.W.
        • Walters B.R.
        EGSnrc C++ class library.
        National Research Council of Canada, 2019 (Report PIRS-898)
        • Poludniowski G.
        • Landry G.
        • DeBlois F.
        • Evans P.M.
        • Verhaegen F.
        SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes.
        Phys Med Biol. 2009; 54: 433-438https://doi.org/10.1088/0031-9155/54/19/n01
        • Araki F.
        • Ohno T.
        • Umeno S.
        Ionization chamber dosimetry based on 60Co absorbed dose to water calibration for diagnostic kilovoltage X-ray beams.
        Phys Med Biol. 2018; 63185018https://doi.org/10.1088/1361-6560/aad9c0
        • Berger M.J.
        • Hubbell J.H.
        • Seltzer S.M.
        • Chang J.
        • Coursey J.S.
        • Sukumar R.
        • et al.
        XCOM: photon cross sections database, NIST standard reference database. NIST, PML.
        Radiat Phys Div. 2010; (http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM. html.https://dx.doi.org/10.18434/T48G6X)
        • Sechopoulos I.
        • Rogers D.W.
        • Bazalova-Carter M.
        • Bolch W.E.
        • Health E.C.
        • McNitt-Gray M.F.
        • et al.
        RECORDS: improved reporting of montE CarlO RaDiation transport studies: report of the AAPM Research Committee Task Group 268.
        Med Phys. 2017; 45: e1-e5https://doi.org/10.1002/mp.12702
        • Ramaseshan R.
        • Kohli K.
        • Cao F.
        • Heaton R.
        Dosimetric evaluation of plastic water diagnostic therapy.
        J Appl Clin Med Phys. 2008; 29: 98-111https://doi.org/10.1120/jacmp.v9i2. 2761
        • Hill R.
        • Kuncic Z.
        • Baldock C.
        The water equivalence of solid phantoms for low energy photon beams.
        Med Phys. 2010; 37: 4355-4363https://doi.org/10.1118/1.3462558
        • Ma C.-M.
        • Coffey C.
        • DeWerd L.
        • Liu C.
        • Nath R.
        • Seltzer S.
        • et al.
        AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology.
        Med Phys. 2001; 28: 868-893https://doi.org/10.1118/1.1374247
        • Mainegra-Hing M.
        • Rogers D.W.
        • Townson R.W.
        • Walters B.R.
        • Tessier F.
        • Kawrakow I.
        The EGSnrc g application.
        National Research Council of Canada, 2020 (Report PIRS-3100)