Advertisement

Dosimetric accuracy of dual isocenter irradiation in low magnetic field resonance guided radiotherapy system for extended abdominal tumours

Published:April 23, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.037

      Highlights

      • Radiotherapy is often dealing with extended abdomen and pelvic tumours.
      • These districts are featured by tumour and OARs inter/intra- fraction variation.
      • These tumors can exceed the maximum longitudinally field size of the MRgRT system.
      • Dual isocenters treatment plans can increase significantly the treatment field size.
      • Dosimetric accuracy of dual isocenter has been assessed in MRgRT system.

      Abstract

      Purpose

      Due to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac.

      Material and Methods

      Dual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch.

      Results

      MLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation.
      2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis.
      The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV).

      Conclusion

      The dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Placidi L.
        • Romano A.
        • Chiloiro G.
        • Cusumano D.
        • Boldrini L.
        • Cellini F.
        • et al.
        On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: Clinical and dosimetric considerations.
        Tech Innov Patient Support Radiat Oncol. 2020; 15: 15-21https://doi.org/10.1016/j.tipsro.2020.06.001
        • Corradini S.
        • Alongi F.
        • Andratschke N.
        • Belka C.
        • Boldrini L.
        • Cellini F.
        • et al.
        MR-guidance in clinical reality: current treatment challenges and future perspectives.
        Radiat Oncol. 2019; 14: 92https://doi.org/10.1186/s13014-019-1308-y
        • Klüter S.
        Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational.
        Radiation Oncology. 2019; 18: 98-101https://doi.org/10.1016/j.ctro.2019.04.007
        • Raaymakers B.W.
        • Lagendijk J.J.W.
        • Overweg J.
        • Kok J.G.M.
        • Raaijmakers A.J.E.
        • Kerkhof E.M.
        • et al.
        Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.
        Phys Med Biol. 2009;54:N229–237.; https://doi.org/10.1088/0031-9155/54/12/N01
        • Barosi G.
        Myelofibrosis with myeloid metaplasia.
        Hematol Oncol Clin North Am. 2003; 17: 1211-1226https://doi.org/10.1016/s0889-8588(03)00080-7
        • Löfvenberg E.
        • Wahlin A.
        • Roos G.
        • Ost A.
        Reversal of myelofibrosis by hydroxyurea.
        Eur J Haematol. 1990; 44: 33-38https://doi.org/10.1111/j.1600-0609.1990.tb00344.x
        • Martínez-Trillos A.
        • Gaya A.
        • Maffioli M.
        • Arellano-Rodrigo E.
        • Calvo X.
        • Díaz-Beyá M.
        • et al.
        Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients.
        Ann Hematol. 2010; 89: 1233-1237https://doi.org/10.1007/s00277-010-1019-9
        • Tefferi A.
        • Mesa R.A.
        • Nagorney D.M.
        • Schroeder G.
        • Silverstein M.N.
        Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients.
        Blood. 2000; 95: 2226-2233
        • Wagner H.
        • McKeough P.G.
        • Desforges J.
        • Madoc-Jones H.
        Splenic irradiation in the treatment of patients with chronic myelogenous leukemia or myelofibrosis with myeloid metaplasia. Results of daily and intermittent fractionation with and without concomitant hydroxyurea.
        Cancer. 1986; 58: 1204-1207https://doi.org/10.1002/1097-0142(19860915)58:6<1204::aid-cncr2820580605>3.0.co;2-g
        • Elliott M.A.
        • Chen M.G.
        • Silverstein M.N.
        • Tefferi A.
        Splenic irradiation for symptomatic splenomegaly associated with myelofibrosis with myeloid metaplasia.
        Br J Haematol. 1998; 103: 505-511https://doi.org/10.1046/j.1365-2141.1998.00998.x
        • Zaorsky N.G.
        • Williams G.R.
        • Barta S.K.
        • Esnaola N.F.
        • Kropf P.L.
        • Hayes S.B.
        • et al.
        Splenic irradiation for splenomegaly: A systematic review.
        Cancer Treat Rev. 2017; 53: 47-52https://doi.org/10.1016/j.ctrv.2016.11.016
        • Paulino A.C.
        • Reddy S.P.
        Splenic irradiation in the palliation of patients with lymphoproliferative and myeloproliferative disorders.
        Am J Hosp Palliat Care. 1996; 13: 32-35https://doi.org/10.1177/104990919601300613
        • Soldić Z.
        • Murgić J.
        • Jazvić M.
        • Radić J.
        • Bolanca A.
        • Stancić V.
        • et al.
        Splenic irradiation in hematologic malignancies and other hematologic disorders–single institution experience.
        Acta Clin Croat. 2011; 50: 29-35
        • Mutic S.
        • Dempsey J.F.
        The ViewRay system: magnetic resonance-guided and controlled radiotherapy.
        Semin Radiat Oncol. 2014; 24: 196-199https://doi.org/10.1016/j.semradonc.2014.02.008
        • van der Heide U.A.
        MR-guided radiation therapy.
        Physica Med. 2016; 32: 175https://doi.org/10.1016/j.ejmp.2016.07.284
        • Gao S.
        • Balter P.A.
        • Rose M.
        • Simon W.E.
        A comparison of methods for monitoring photon beam energy constancy.
        J Appl Clin Med Phys. 2016; 17: 242-253https://doi.org/10.1120/jacmp.v17i6.6454
        • Fogliata A.
        • Garcia R.
        • Knoos T.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • et al.
        Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy.
        Med Phys. 2012; 39: 6455-6464https://doi.org/10.1118/1.4754799
        • Cusumano D.
        • Boldrini L.
        • Menna S.
        • Teodoli S.
        • Placidi E.
        • Chiloiro G.
        • et al.
        Evaluation of a simplified optimizer for MR-guided adaptive RT in case of pancreatic cancer.
        J Appl Clin Med Phys. 2019; https://doi.org/10.1002/acm2.12697
        • Wang Y.
        • Mazur T.R.
        • Green O.
        • Hu Y.
        • Li H.
        • Rodriguez V.
        • et al.
        A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model.
        Med Phys. 2016; 43: 4040https://doi.org/10.1118/1.4953198
        • Kawrakow I.
        • Fippel M.
        Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC.
        Phys Med Biol. 2000; 45: 2163-2183https://doi.org/10.1088/0031-9155/45/8/308
        • Casanova Borca V.
        • Pasquino M.
        • Russo G.
        • Grosso P.
        • Cante D.
        • Sciacero P.
        • et al.
        Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification.
        J Appl Clin Med Phys. 2013; 14: 4111https://doi.org/10.1120/jacmp.v14i2.4111
        • Ellefson S.T.
        • Culberson W.S.
        • Bednarz B.P.
        • DeWerd L.A.
        • Bayouth J.E.
        An analysis of the ArcCHECK-MR diode array’s performance for ViewRay quality assurance.
        J Appl Clin Med Phys. 2017; 18: 161-171https://doi.org/10.1002/acm2.12107
        • Cusumano D.
        • Fumagalli M.L.
        • Ghielmetti F.
        • Rossi L.
        • Grossi G.
        • Lanzarotti R.
        • et al.
        Sum signal dosimetry: A new approach for high dose quality assurance with Gafchromic EBT3.
        J Appl Clin Med Phys. 2017; 18: 181-190https://doi.org/10.1002/acm2.12045
        • Cusumano D.
        • Fumagalli M.L.
        • Marchetti M.
        • Fariselli L.
        • De Martin E.
        Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3.
        Med Dosim. 2015; 40: 226-231https://doi.org/10.1016/j.meddos.2015.01.001
      1. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys 2018;45:e53–83. 10.1002/mp.12810.

        • Cusumano D.
        • Teodoli S.
        • Greco F.
        • Fidanzio A.
        • Boldrini L.
        • Massaccesi M.
        • et al.
        Experimental evaluation of the impact of low tesla transverse magnetic field on dose distribution in presence of tissue interfaces.
        Phys Med. 2018; 53: 80-85https://doi.org/10.1016/j.ejmp.2018.08.007
        • Boman E.
        • Rossi M.
        • Kapanen M.
        The robustness of dual isocenter VMAT radiation therapy for bilateral lymph node positive breast cancer.
        Phys Med. 2017; 44: 11-17https://doi.org/10.1016/j.ejmp.2017.11.006
        • Placidi L.
        • Cusumano D.
        • Boldrini L.
        • Votta C.
        • Pollutri V.
        • Antonelli M.V.
        • et al.
        Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency.
        J Appl Clin Med Phys. 2020; https://doi.org/10.1002/acm2.13030
        • Boldrini L.
        • Cusumano D.
        • Cellini F.
        • Azario L.
        • Mattiucci G.C.
        • Valentini V.
        Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls.
        Radiat Oncol. 2019; 14: 71https://doi.org/10.1186/s13014-019-1275-3
      2. van Sörnsen de Koste JR, Palacios MA, Bruynzeel AME, Slotman BJ, Senan S, Lagerwaard FJ. MR-guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A Geometric Analysis. Int J Radiat Oncol Biol Phys 2018;102:858–66. 10.1016/j.ijrobp.2018.05.048.

        • Klein E.E.
        • Hanley J.
        • Bayouth J.
        • Yin F.-F.
        • Simon W.
        • Dresser S.
        • et al.
        Task Group 142 report: quality assurance of medical accelerators.
        Med Phys. 2009; 36: 4197-4212https://doi.org/10.1118/1.3190392
        • Mittauer K.E.
        • Yadav P.
        • Paliwal B.
        • Bayouth J.E.
        Characterization of positional accuracy of a double-focused and double-stack multileaf collimator on an MR-guided radiotherapy (MRgRT) Linac using an IC-profiler array.
        Med Phys. 2020; 47: 317-330https://doi.org/10.1002/mp.13902
        • Fellin F.
        • Fracchiolla F.
        • Rombi B.
        • Lipparini M.
        • Vennarini S.
        • Farace P.
        An advanced junction concept in pediatric craniospinal irradiation by proton pencil beam scanning.
        Phys Med. 2019; 60: 168-173https://doi.org/10.1016/j.ejmp.2019.04.002
        • Yu Y.
        • Chen J.
        • Leary C.I.
        • Shugard E.
        • Yom S.S.
        Split-field vs extended-field intensity-modulated radiation therapy plans for oropharyngeal cancer: Which spares the larynx? Which spares the thyroid?.
        Med Dosim. 2016; 41: 148-153https://doi.org/10.1016/j.meddos.2015.11.003
        • Ginn J.S.
        • Agazaryan N.
        • Cao M.
        • Baharom U.
        • Low D.A.
        • Yang Y.
        • et al.
        Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system.
        Phys Med Biol. 2017;62:4525–40.; https://doi.org/10.1088/1361-6560/aa6e1a