Advertisement

Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation

Published:April 24, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.03.038

      Highlights

      • Two radiomic features were identified as response predictors in rectal cancer.
      • This study aims to validate such features on an external larger dataset.
      • The analysis was performed considering clinical and pathological complete response.
      • The variation of length least showed good performance in predicting both outcomes.
      • Grey Level non uniformity reported limited performance as predictor.

      Abstract

      Introduction

      A recent study performed on 16 locally advanced rectal cancer (LARC) patients treated using magnetic resonance guided radiotherapy (MRgRT) has identified two delta radiomics features as predictors of clinical complete response (cCR) after neoadjuvant radio-chemotherapy (nCRT).
      This study aims to validate these features (ΔLleast and Δglnu) on an external larger dataset, expanding the analysis also for pathological complete response (pCR) prediction.

      Methods

      A total of 43 LARC patients were enrolled: Gross Tumour Volume (GTV) was delineated on T2/T1* MR images acquired during MRgRT and the two delta features were calculated.
      Receiver Operating Characteristic (ROC) curve analysis was performed on the 16 cases of the original study and the best cut-off value was identified. The performance of ΔLleast and Δglnu was evaluated at the best cut-off value.

      Results

      On the original dataset of 16 patients, ΔLleast reported an AUC of 0.81 for cCR and 0.93 for pCR, while Δglnu 0.72 and 0.54 respectively.
      The best cut-off values of ΔLleast was 0.73 for both outcomes, while Δglnu reported 0.54 for cCR and 0.93 for pCR. At the external validation, ΔLleast showed an accuracy of 81% for cCR and 79% for pCR, while Δglnu reported 63% for cCR and 40% for pCR.

      Conclusion

      The accuracy of ΔLleast in predicting cCR and pCR is significantly higher than those obtained considering Δglnu, but inferior if compared with other image-based biomarker, such as the early-regression index. Studies with larger cohorts of patients are recommended to further investigate the role of delta radiomic features in MRgRT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fave X.
        • Zhang L.
        • Yang J.
        • Mackin D.
        • Balter P.
        • Gomez D.
        • et al.
        Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer.
        Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-00665-z
        • Mazzei M.A.
        • Nardone V.
        • Di Giacomo L.
        • Bagnacci G.
        • Gentili F.
        • Tini P.
        • et al.
        The role of delta radiomics in gastric cancer.
        Quant Imaging Med Surg. 2018; 8: 719-721
        • Boldrini L.
        • Cusumano D.
        • Chiloiro G.
        • Casà C.
        • Masciocchi C.
        • Dinapoli N.
        • et al.
        Delta Radiomics for rectal cancer response prediction with hybrid 0.35 T Magnetic Resonance guided Radiotherapy (MRgRT): a hypothesis generating study for an innovative personalized medicine approach.
        Radiol Med (Torino). 2018;
        • Cusumano D.
        • Boldrini L.
        • Yadav P.
        • Casà C.
        • Lee S.L.
        • Romano A.
        • et al.
        Delta radiomics analysis for local control prediction in pancreatic cancer patients treated using magnetic resonance guided radiotherapy.
        Diagnostics. 2021; 11: 72https://doi.org/10.3390/diagnostics11010072
        • van Timmeren J.E.
        • Leijenaar R.T.H.
        • van Elmpt W.
        • Reymen B.
        • Oberije C.
        • Monshouwer R.
        • et al.
        Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.
        Radiother Oncol. 2017; 123: 363-369https://doi.org/10.1016/j.radonc.2017.04.016
        • Bagher-Ebadian H.
        • Siddiqui F.
        • Liu C.
        • Movsas B.
        • Chetty I.J.
        On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers.
        Med Phys. 2017; 44: 1755-1770https://doi.org/10.1002/mp.12188
        • Alahmari S.S.
        • Cherezov D.
        • Goldgof D.B.
        • Hall L.O.
        • Gillies R.J.
        • Schabath M.B.
        Delta radiomics improves pulmonary nodule malignancy prediction in lung cancer screening.
        IEEE Access. 2018; 6: 77796-77806https://doi.org/10.1109/ACCESS.2018.2884126
        • Cusumano D.
        • Meijer G.
        • Lenkowicz J.
        • Chiloiro G.
        • Boldrini L.
        • Masciocchi C.
        • et al.
        A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer.
        Radiol Med. 2021; 126: 421-429https://doi.org/10.1007/s11547-020-01266-z
        • Horvat N.
        • Veeraraghavan H.
        • Khan M.
        • Blazic I.
        • Zheng J.
        • Capanu M.
        • et al.
        MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy.
        Radiology. 2018; 287: 833-843https://doi.org/10.1148/radiol.2018172300
        • Dinapoli N.
        • Barbaro B.
        • Gatta R.
        • Chiloiro G.
        • Casà C.
        • Masciocchi C.
        • et al.
        Magnetic resonance, vendor-independent, intensity histogram analysis predicting pathologic complete response after radiochemotherapy of rectal cancer.
        Int J Radiat Oncol Biol Phys. 2018; 102: 765-774https://doi.org/10.1016/j.ijrobp.2018.04.065
        • Cusumano D.
        • Dinapoli N.
        • Boldrini L.
        • Chiloiro G.
        • Gatta R.
        • Masciocchi C.
        • et al.
        Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer.
        Radiol Med. 2018; 123: 286-295https://doi.org/10.1007/s11547-017-0838-3
        • Fiorino C.
        • Gumina C.
        • Passoni P.
        • Palmisano A.
        • Broggi S.
        • Cattaneo G.M.
        • et al.
        A TCP-based early regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal cancer.
        Radiother Oncol. 2018; 128: 564-568https://doi.org/10.1016/j.radonc.2018.06.019
        • Jeon S.H.
        • Song C.
        • Chie E.K.
        • Kim B.
        • Kim Y.H.
        • Chang W.
        • et al.
        Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer.
        Radiat Oncol. 2019; 14https://doi.org/10.1186/s13014-019-1246-8
        • Chiloiro G.
        • Boldrini L.
        • Meldolesi E.
        • Re A.
        • Cellini F.
        • Cusumano D.
        • et al.
        MR-guided radiotherapy in rectal cancer: first clinical experience of an innovative technology.
        Clin Transl Radiat Oncol. 2019; 18: 80-86https://doi.org/10.1016/j.ctro.2019.04.006
        • Valentini V.
        • Gambacorta M.A.
        • Barbaro B.
        • Chiloiro G.
        • Coco C.
        • Das P.
        • et al.
        International consensus guidelines on Clinical Target Volume delineation in rectal cancer.
        Radiother Oncol. 2016; 120: 195-201https://doi.org/10.1016/j.radonc.2016.07.017
        • Boldrini L.
        • Placidi E.
        • Dinapoli N.
        • Azario L.
        • Cellini F.
        • Massaccesi M.
        • et al.
        Hybrid Tri-Co-60 MRI radiotherapy for locally advanced rectal cancer: an in silico evaluation.
        Tech Innov Patient Support Radiat Oncol. 2018; 6: 5-10https://doi.org/10.1016/j.tipsro.2018.02.002
        • Mandard A.-M.
        • Dalibard F.
        • Mandard J.-C.
        • Marnay J.
        • Henry-Amar M.
        • Petiot J.-F.
        • et al.
        Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinomaClinicopathologic correlations.
        Cancer. 1994; 73: 2680-2686https://doi.org/10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C
        • Taylor J.
        An introduction to error analysis: The Study of uncertainties in physical measurements.
        II. University Science Books, II. Sausalito, CA1997
        • Fowler J.F.
        21 years of biologically effective dose.
        Br J Radiol. 2010; 83: 554-568https://doi.org/10.1259/bjr/31372149
        • Cusumano D.
        • Boldrini L.
        • Yadav P.
        • Yu G.
        • Musurunu B.
        • Chiloiro G.
        • et al.
        External Validation of Early Regression Index (ERITCP) as predictor of pathologic complete response in rectal cancer using magnetic resonance-guided radiation therapy.
        Int J Radiat Oncol Biol Phys. 2020; 108: 1347-1356https://doi.org/10.1016/j.ijrobp.2020.07.2323
        • Grégoire V.
        • Mackie T.R.
        State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83).
        Cancer Radiother. 2011; 15: 555-559https://doi.org/10.1016/j.canrad.2011.04.003
        • Gatta R.
        • Vallati M.
        • Dinapoli N.
        • Masciocchi C.
        • Lenkowicz J.
        • Cusumano D.
        • et al.
        Towards a modular decision support system for radiomics: a case study on rectal cancer.
        Artif Intell Med. 2019; 96: 145-153https://doi.org/10.1016/j.artmed.2018.09.003
        • Robin X.
        • Turck N.
        • Hainard A.
        • Tiberti N.
        • Lisacek F.
        • Sanchez J.-C.
        • et al.
        pROC: an open-source package for R and S+ to analyze and compare ROC curves.
        BMC Bioinf. 2011; 12https://doi.org/10.1186/1471-2105-12-77
        • Ruopp M.D.
        • Perkins N.J.
        • Whitcomb B.W.
        • Schisterman E.F.
        Youden index and optimal cut-point estimated from observations affected by a lower limit of detection.
        Biom J Biom Z. 2008; 50: 419-430https://doi.org/10.1002/bimj.200710415
      1. International Commissioning on Radiation Units and Measurements. Receiver Operating Characteristic (ROC) Analysis in Medical Imaging. ICRU Report 79; 2008.

        • Boldrini L.
        • Cusumano D.
        • Cellini F.
        • Azario L.
        • Mattiucci G.C.
        • Valentini V.
        Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls.
        Radiat Oncol. 2019; 14: 71https://doi.org/10.1186/s13014-019-1275-3
        • Cusumano D.
        • Dhont J.
        • Boldrini L.
        • Chiloiro G.
        • Teodoli S.
        • Massaccesi M.
        • et al.
        Predicting tumour motion during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions based on real time MR.
        Radiother Oncol. 2018; 129: 456-462https://doi.org/10.1016/j.radonc.2018.07.025
        • Simpson G.
        • Spieler B.
        • Dogan N.
        • Portelance L.
        • Mellon E.A.
        • Kwon D.
        • et al.
        Predictive value of 0.35 T magnetic resonance imaging radiomic features in stereotactic ablative body radiotherapy of pancreatic cancer: aa pilot study.
        Med Phys. 2020; 47: 3682-3690https://doi.org/10.1002/mp.v47.810.1002/mp.14200
        • Gao Y.
        • Kalbasi A.
        • Hsu W.
        • Ruan D.
        • Fu J.
        • Shao J.
        • et al.
        Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs.
        Phys Med Biol. 2020; 65https://doi.org/10.1088/1361-6560/ab9e58
        • Collins G.S.
        • Reitsma J.B.
        • Altman D.G.
        • Moons K.G.M.
        Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.
        Ann Intern Med. 2015; 162: 55-63https://doi.org/10.7326/M14-0697
        • Fiorino C.
        • Passoni P.
        • Palmisano A.
        • Gumina C.
        • Cattaneo G.M.
        • Broggi S.
        • et al.
        Accurate outcome prediction after neo-adjuvant radio-chemotherapy for rectal cancer based on a TCP-based early regression index.
        Clin Transl Radiat Oncol. 2019; 19: 12-16https://doi.org/10.1016/j.ctro.2019.07.001
        • Isaksson L.J.
        • Raimondi S.
        • Botta F.
        • Pepa M.
        • Gugliandolo S.G.
        • De Angelis S.P.
        • et al.
        Effects of MRI image normalization techniques in prostate cancer radiomics.
        Phys Med. 2020; 71: 7-13https://doi.org/10.1016/j.ejmp.2020.02.007