Advertisement

RESUMEN: A flexible class of multi-parameter qMRI protocols

      Highlights

      • A new class of multi-parameter quantitative MRI protocols is presented.
      • The derived brain maps show high signal-to-noise ratio and accuracy.
      • The RESUMEN schemes can be easily integrated in research and routine protocols.

      Abstract

      Purpose

      To introduce a class of fast 3D quantitative MRI (qMRI) schemes (RESUMEN, for N = 1 , , 4 ) that allow for a thorough characterization of microstructural properties of brain tissues.

      Methods

      An arbitrary multi-echo GRE acquisition optimized for quantitative susceptibility mapping (QSM) is complemented with an appropriate low flip-angle GRE sequence drawn from four possible choices. The acquired signals are processed to analytically derive the longitudinal relaxation ( R 1 ) and free induction decay ( R 2 ) rates, as well as the proton density (PD) and QSM. A comprehensive modeling of the excitation and B 1 - profiles and of the RF-spoiling is included in the acquisition and processing pipeline.

      Results

      The RESUMEN maps appear homogeneous throughout the field-of-view and exhibit comparable values and high SNR across the considered range of N values.

      Conclusions

      The introduced schemes represent a class of robust and flexible strategies to derive a thorough and fast qMRI study, suitable for a whole-brain acquisition with isotropic voxel resolution of 700 μ m in less than 15 min.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Damadian R.
        Tumor detection by nuclear magnetic resonance.
        Science. 1971; 171: 1151-1153
        • Bottomley P.A.
        • Hardy C.
        • Argersinger R.
        • Allen-Moore G.
        A review of 1h nuclear magnetic resonance relaxation in pathology: are t1 and t2 diagnostic?.
        Med Phys. 1987; 14: 1-37
        • Seiberlich N.
        • Gulani V.
        • Campbell-Washburn A.
        • Sourbron S.
        • Doneva M.
        • Calamante F.
        • Hu H.
        Quantitative magnetic resonance imaging.
        Elsevier Science, 2020 ([ISSN])
        • Wehrli F.W.
        • Song H.K.
        • Saha P.K.
        • Wright A.C.
        Quantitative mri for the assessment of bone structure and function.
        NMR Biomed Int J Devot Develop Appl Magn Reson Vivo. 2006; 19: 731-764
        • Welsch G.H.
        • Apprich S.
        • Zbyn S.
        • Mamisch T.C.
        • Mlynarik V.
        • Scheffler K.
        • Bieri O.
        • Trattnig S.
        Biochemical (t2, t2* and magnetisation transfer ratio) mri of knee cartilage: feasibility at ultra-high field (7t) compared with high field (3t) strength.
        Eur Radiol. 2011; 21: 1136-1143
        • Messroghli D.R.
        • Radjenovic A.
        • Kozerke S.
        • Higgins D.M.
        • Sivananthan M.U.
        • Ridgway J.P.
        Modified look-locker inversion recovery (molli) for high-resolution t1 mapping of the heart.
        Magn Reson Med Off J Int Soc Magn Reson Med. 2004; 52: 141-146
        • Cocozza S.
        • Canna A.
        • Lanzillo R.
        • Russo C.
        • Postiglione E.
        • Liuzzi R.
        • et al.
        Lack of correlation between extracranial venous abnormalities and multiple sclerosis: a quantitative mri study.
        British J Radiol. 2016; 89: 20160321
        • Müller A.
        • Jurcoane A.
        • Kebir S.
        • Ditter P.
        • Schrader F.
        • Herrlinger U.
        • Tzaridis T.
        • Mädler B.
        • Schild H.H.
        • Glas M.
        • et al.
        Quantitative t1-mapping detects cloudy-enhancing tumor compartments predicting outcome of patients with glioblastoma.
        Cancer Med. 2017; 6: 89-99
        • Conson M.
        • Cella L.
        • Pacelli R.
        • Comerci M.
        • Liuzzi R.
        • Salvatore M.
        • Quarantelli M.
        Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: from atlas to dose–volume histograms.
        Radiother Oncol. 2014; 112: 326-331
        • Olsson L.E.
        • Johansson M.
        • Zackrisson B.
        • Blomqvist L.K.
        Basic concepts and applications of functional magnetic resonance imaging for radiotherapy of prostate cancer.
        Phys Imag Radiat Oncol. 2019; 9: 50-57
        • Gurney-Champion O.J.
        • Mahmood F.
        • van Schie M.
        • Julian R.
        • George B.
        • Philippens M.E.
        • van der Heide U.A.
        • Thorwarth D.
        • Redalen K.R.
        Quantitative imaging for radiotherapy purposes.
        Radiother Oncol. 2020; 146: 66-75
      1. Cercignani M, Dowell N, Tofts P. Quantitative MRI of the brain: principles of physical measurement, 2nd ed., Series in medical physics and biomedical engineering. CRC Press; 2018.

        • Pontillo G.
        • Cocozza S.
        • Lanzillo R.
        • Russo C.
        • Stasi M.
        • Paolella C.
        • Vola E.
        • Criscuolo C.
        • Borrelli P.
        • Palma G.
        • et al.
        Determinants of deep gray matter atrophy in multiple sclerosis: a multimodal mri study.
        Amer J Neuroradiol. 2019; 40: 99-106
        • Pontillo G.
        • Petracca M.
        • Monti S.
        • Quarantelli M.
        • Criscuolo C.
        • Lanzillo R.
        • et al.
        Unraveling deep gray matter atrophy, iron and myelin changes in multiple sclerosis.
        Amer J Neuroradiol. 2021; https://doi.org/10.3174/ajnr.A7093
        • Coda A.
        • Anzilotti S.
        • Boscia F.
        • Greco A.
        • Panico M.
        • Gargiulo S.
        • Gramanzini M.
        • Zannetti A.
        • Albanese S.
        • Pignataro G.
        • et al.
        In vivo imaging of cns microglial activation/macrophage infiltration with combined [18 f] dpa-714-pet and spio-mri in a mouse model of relapsing remitting experimental autoimmune encephalomyelitis.
        Eur J Nucl Med Mol Imag. 2020; : 1-13
        • Damulina A.
        • Pirpamer L.
        • Soellradl M.
        • Sackl M.
        • Tinauer C.
        • Hofer E.
        • Enzinger C.
        • Gesierich B.
        • Duering M.
        • Ropele S.
        • et al.
        Cross-sectional and longitudinal assessment of brain iron level in alzheimer disease using 3-t mri.
        Radiology. 2020; 296: 619-626
        • Russo C.
        • Pontillo G.
        • Pisani A.
        • Saccà F.
        • Riccio E.
        • Macera A.
        • Rusconi G.
        • Stanzione A.
        • Borrelli P.
        • Morra V.B.
        • et al.
        Striatonigral involvement in fabry disease: a quantitative and volumetric magnetic resonance imaging study.
        Parkinsonism Relat Disorders. 2018; 57: 27-32
        • Li W.
        • Long J.A.
        • Watts L.
        • Shen Q.
        • Liu Y.
        • Jiang Z.
        • Duong T.Q.
        Spatiotemporal changes in diffusion, t2 and susceptibility of white matter following mild traumatic brain injury.
        NMR Biomed. 2016; 29: 896-903
        • Monti S.
        • Palma G.
        • Borrelli P.
        • Tedeschi E.
        • Cocozza S.
        • Salvatore M.
        • Mancini M.
        A multiparametric and multiscale approach to automated segmentation of brain veins.
        in: 2015 37th Annual International Conference of the IEEE EMBC. IEEE, 2015: 3041-3044
        • Monti S.
        • Cocozza S.
        • Borrelli P.
        • Straub S.
        • Ladd M.E.
        • Salvatore M.
        • Tedeschi E.
        • Palma G.
        Maven: an algorithm for multi-parametric automated segmentation of brain veins from gradient echo acquisitions.
        IEEE Trans Med Imag. 2017; 36: 1054-1065
        • Breckwoldt M.O.
        • Schwarz D.
        • Bendszus M.
        Clinical value of susceptibility weighted imaging for brain metastases imaging.
        Front Neurol. 2020; 11: 55
        • Reuter G.
        • Lommers E.
        • Balteau E.
        • Simon J.
        • Phillips C.
        • Scholtes F.
        • Martin D.
        • Lombard A.
        • Maquet P.
        Multiparameter quantitative histological mri values in high-grade gliomas: a potential biomarker of tumor progression.
        Neuro-oncol Pract. 2020; 7: 646-655
        • Zhou Z.
        • Deng H.
        • Yang W.
        • Wang Z.
        • Lin L.
        • Munasinghe J.
        • Jacobson O.
        • Liu Y.
        • Tang L.
        • Ni Q.
        • et al.
        Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging.
        Nat Commun. 2020; 11: 1-12
        • Monti S.
        • Paganelli C.
        • Buizza G.
        • Preda L.
        • Valvo F.
        • Baroni G.
        • Palma G.
        • Cella L.
        A novel framework for spatial normalization of dose distributions in voxel-based analyses of brain irradiation outcomes.
        Phys Med. 2020; 69: 164-169
        • Thust S.C.
        • Van Den Bent M.J.
        • Smits M.
        Pseudoprogression of brain tumors.
        J Magn Reson Imag. 2018; 48: 571-589
        • Pontillo G.
        • Cocozza S.
        • Lanzillo R.
        • Borrelli P.
        • De Rosa A.
        • Brescia Morra V.
        • Tedeschi E.
        • Palma G.
        Brain susceptibility changes in a patient with natalizumab-related progressive multifocal leukoencephalopathy: a longitudinal quantitative susceptibility mapping and relaxometry study.
        Front Neurol. 2017; 8: 294
        • Tedeschi E.
        • Cocozza S.
        • Borrelli P.
        • Ugga L.
        • Morra V.B.
        • Palma G.
        Longitudinal assessment of dentate nuclei relaxometry during massive gadobutrol exposure.
        Magn Reson Med Sci. 2018; 17: 100
        • van Houdt P.J.
        • Kallehauge J.F.
        • Tanderup K.
        • Nout R.
        • Zaletelj M.
        • Tadic T.
        • van Kesteren Z.J.
        • van den Berg C.A.
        • Georg D.
        • Côté J.-C.
        • et al.
        Phantom-based quality assurance for multicenter quantitative mri in locally advanced cervical cancer.
        Radiother Oncol. 2020; 153: 114-121
        • Palma G.
        • Monti S.
        • Conson M.
        • Pacelli R.
        • Cella L.
        Normal tissue complication probability (ntcp) models for modern radiation therapy.
        in: Seminars in oncology. vol. 46. Elsevier, 2019: 210-218
        • Palma G.
        • Monti S.
        • Buonanno A.
        • Pacelli R.
        • Cella L.
        Pace: a probabilistic atlas for normal tissue complication estimation in radiation oncology.
        Front Oncol. 2019; 9: 130
        • Tedeschi E.
        • Palma G.
        • Canna A.
        • Cocozza S.
        • Russo C.
        • Borrelli P.
        • Lanzillo R.
        • Angelini V.
        • Postiglione E.
        • Morra V.B.
        • et al.
        In vivo dentate nucleus mri relaxometry correlates with previous administration of gadolinium-based contrast agents.
        Eur Radiol. 2016; 26: 4577-4584
        • Cocozza S.
        • Pontillo G.
        • Lanzillo R.
        • Russo C.
        • Petracca M.
        • Di Stasi M.
        • Paolella C.
        • Vola E.A.
        • Criscuolo C.
        • Moccia M.
        • et al.
        Mri features suggestive of gadolinium retention do not correlate with expanded disability status scale worsening in multiple sclerosis.
        Neuroradiology. 2019; 61: 155-162
        • Cocozza S.
        • Russo C.
        • Pisani A.
        • Olivo G.
        • Riccio E.
        • Cervo A.
        • Pontillo G.
        • Feriozzi S.
        • Veroux M.
        • Battaglia Y.
        • et al.
        Redefining the pulvinar sign in fabry disease.
        Amer J Neuroradiol. 2017; 38: 2264-2269
        • Lutti A.
        • Dick F.
        • Sereno M.I.
        • Weiskopf N.
        Using high-resolution quantitative mapping of r1 as an index of cortical myelination.
        Neuroimage. 2014; 93: 176-188
        • Filo S.
        • Shtangel O.
        • Salamon N.
        • Kol A.
        • Weisinger B.
        • Shifman S.
        • Mezer A.A.
        Disentangling molecular alterations from water-content changes in the aging human brain using quantitative mri.
        Nat Commun. 2019; 10: 1-16
        • O’Muircheartaigh J.
        • Vavasour I.
        • Ljungberg E.
        • Li D.K.
        • Rauscher A.
        • Levesque V.
        • Garren H.
        • Clayton D.
        • Tam R.
        • Traboulsee A.
        • et al.
        Quantitative neuroimaging measures of myelin in the healthy brain and in multiple sclerosis.
        Human Brain Map. 2019; 40: 2104-2116
        • Deoni S.C.
        • Rutt B.K.
        • Peters T.M.
        Rapid combined t1 and t2 mapping using gradient recalled acquisition in the steady state.
        Magn Reson Med Off J Int Soc Magn Reson Med. 2003; 49: 515-526
        • Palma G.
        • Tedeschi E.
        • Borrelli P.
        • Cocozza S.
        • Russo C.
        • Liu S.
        • Ye Y.
        • Comerci M.
        • Alfano B.
        • Salvatore M.
        • et al.
        A novel multiparametric approach to 3d quantitative mri of the brain.
        PloS One. 2015; 10 (e0134963)
        • Chen Y.
        • Liu S.
        • Wang Y.
        • Kang Y.
        • Haacke E.M.
        Strategically acquired gradient echo (stage) imaging, part i: Creating enhanced t1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.
        Magn Reson Imag. 2018; 46: 130-139
        • Monti S.
        • Borrelli P.
        • Tedeschi E.
        • Cocozza S.
        • Palma G.
        Resume: turning an swi acquisition into a fast qmri protocol.
        PLoS One. 2017; 12 (e0189933)
        • Blinn J.F.
        How to solve a cubic equation, part 5: Back to numerics.
        IEEE Comput Graph Appl. 2007; 27: 78-89
        • Li W.
        • Wu B.
        • Liu C.
        Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition.
        Neuroimage. 2011; 55: 1645-1656
        • Li W.
        • Wang N.
        • Yu F.
        • Han H.
        • Cao W.
        • Romero R.
        • Tantiwongkosi B.
        • Duong T.Q.
        • Liu C.
        A method for estimating and removing streaking artifacts in quantitative susceptibility mapping.
        Neuroimage. 2015; 108: 111-122
        • Borrelli P.
        • Palma G.
        • Comerci M.
        • Alfano B.
        Unbiased noise estimation and denoising in parallel magnetic resonance imaging.
        in: 2014 IEEE International Conference on ICASSP. IEEE, 2014: 1230-1234
        • Aja-Fernández S.
        • Tristán-Vega A.
        • Hoge W.S.
        Statistical noise analysis in grappa using a parametrized noncentral chi approximation model.
        Magn Reson Med. 2011; 65: 1195-1206
        • Aja-Fernández S.
        • Vegas-Sánchez-Ferrero G.
        • Tristán-Vega A.
        Noise estimation in parallel mri: Grappa and sense.
        Magn Reson Imag. 2014; 32: 281-290
        • Palma G.
        • Comerci M.
        • Alfano B.
        • Cuomo S.
        • De Michele P.
        • Piccialli F.
        • Borrelli P.
        3d non-local means denoising via multi-gpu.
        in: FedCSIS. IEEE, 2013: 495-498
        • Preibisch C.
        • Deichmann R.
        Influence of rf spoiling on the stability and accuracy of t1 mapping based on spoiled flash with varying flip angles.
        Magn Reson Med Off J Int Soc Magn Reson Med. 2009; 61: 125-135
        • Baudrexel S.
        • Nöth U.
        • Schüre J.-R.
        • Deichmann R.
        T1 mapping with the variable flip angle technique: a simple correction for insufficient spoiling of transverse magnetization.
        Magn Reson Med. 2018; 79: 3082-3092
        • Yarnykh V.L.
        Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field.
        Magn Reson Med Off J Int Soc Magn Reson Med. 2007; 57: 192-200
        • Vovk U.
        • Pernus F.
        • Likar B.
        A review of methods for correction of intensity inhomogeneity in mri.
        IEEE Trans Med Imag. 2007; 26: 405-421
        • Palma G.
        • Monti S.
        • Cella L.
        Voxel-based analysis in radiation oncology: a methodological cookbook.
        Phys Med. 2020; 69: 192-204
        • Borrelli P.
        • Palma G.
        • Tedeschi E.
        • Cocozza S.
        • Comerci M.
        • Alfano B.
        • Haacke E.M.
        • Salvatore M.
        Improving signal-to-noise ratio in susceptibility weighted imaging: a novel multicomponent non-local approach.
        PloS One. 2015; 10 (e0126835)
        • Gasser T.
        • Sroka L.
        • Jennen-Steinmetz C.
        Residual variance and residual pattern in nonlinear regression.
        Biometrika. 1986; 73: 625-633
        • Vrenken H.
        • Geurts J.J.
        • Knol D.L.
        • Van Dijk L.N.
        • Dattola V.
        • Jasperse B.
        • Van Schijndel R.A.
        • Polman C.H.
        • Castelijns J.A.
        • Barkhof F.
        • et al.
        Whole-brain t1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter.
        Radiology. 2006; 240: 811-820
        • Steenwijk M.D.
        • Vrenken H.
        • Jonkman L.E.
        • Daams M.
        • Geurts J.J.
        • Barkhof F.
        • Pouwels P.J.
        High-resolution t1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis.
        Multiple Sclerosis J. 2016; 22: 1279-1288
        • Zivadinov R.
        • Tavazzi E.
        • Bergsland N.
        • Hagemeier J.
        • Lin F.
        • Dwyer M.G.
        • Carl E.
        • Kolb C.
        • Hojnacki D.
        • Ramasamy D.
        • et al.
        Brain iron at quantitative mri is associated with disability in multiple sclerosis.
        Radiology. 2018; 289: 487-496
        • Schweser F.
        • Martins A.L.R.D.
        • Hagemeier J.
        • Lin F.
        • Hanspach J.
        • Weinstock-Guttman B.
        • Hametner S.
        • Bergsland N.
        • Dwyer M.G.
        • Zivadinov R.
        Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: a proposed mechanistic relationship between inflammation and oligodendrocyte vitality.
        Neuroimage. 2018; 167: 438-452
        • Biondetti E.
        • Karsa A.
        • Thomas D.L.
        • Shmueli K.
        Investigating the accuracy and precision of te-dependent versus multi-echo qsm using laplacian-based methods at 3 t.
        Magn Reson Med. 2020; 84: 3040-3053