Highlights
- •A systematic search for papers on applications of AI to medical imaging in Italy was performed.
- •168 research papers were selected 65% using machine learning, 35% deep learning.
- •A rapid increase of interest in AI was observed in the last years.
- •Further collaborations, initiatives and guidelines are needed to develop the research on AI on Imaging.
Abstract
Purpose
Materials and Methods
Results
Conclusions
Keywords
Introduction
Associazione Italiana di Fisica Medica e Sanitaria. Big Data e Intelligenza Artificiale: il gruppo di lavoro AIFM. AIFM 2020. https://www.fisicamedica.it/i-temi-della-fisica-medica/big-data-e-intelligenza-artificiale/big-data-e-intelligenza-artificiale-il-gruppo-di-lavoro-aifm/ (accessed March 1, 2021).
Machine learning and deep learning in imaging
- Amoroso N.
- Diacono D.
- Fanizzi A.
- La Rocca M.
- Monaco A.
- Lombardi A.
- et al.
Alongi P, Laudicella R, Stefano A, Caobelli F, Comelli A, Vento A, et al. Choline PET/CT features to predict survival outcome in high risk prostate cancer restaging: a preliminary machine-learning radiomics study. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharmacol IAR Sect Soc Of 2020. https://doi.org/10.23736/S1824-4785.20.03227-6.
- Ricciardi C.
- Cantoni V.
- Improta G.
- Iuppariello L.
- Latessa I.
- Cesarelli M.
- et al.

- Pantoni L.
- Marzi C.
- Poggesi A.
- Giorgio A.
- De Stefano N.
- Mascalchi M.
- et al.
- Galli M.
- Zoppis I.
- De Sio G.
- Chinello C.
- Pagni F.
- Magni F.
- et al.
Ref | Author | Year | Imaging | Platform | Classification/regression | Type of features | Other variables | Dimensionality reduction | ML | Evaluation metrics | Validation | Indication | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[3] | Lella E., et al. | 2020 | MRI | R | Classification | Graph communicability of connectivity network | / | / | SVM, ANN, RF | ACC, AUC, sensitivity, specificity | 10-fold CV | Alzheimer disease detection | |
[16] | Lombardi A., et al. | 2020 | MRI | R | Regression | Radiomic | / | SVM-RFE | SVR, LASSO, RF | MAE, coefficient of determination | 10-fold CV | Brain age prediction | |
[12]
Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment. NeuroImage Clin. 2019; 24101990https://doi.org/10.1016/j.nicl.2019.101990 | Pantoni L., et al. | 2019 | MRI | Python | Regression | Fractal dimension | / | / | Lasso | Pearson R, | nested 10-fold CV | Small vessel disease, cognitive impairment | |
[17] | Spera G., et al. | 2019 | MRI | Matlab fitsvm, Rapidminer | Classification | Functional Connectivity Measures | / | / | L-SVM | AUC | LOOCV | Autism spectrum disorders | |
[18] | Retico A., et al. | 2018 | MRI | SVM-Light software package | Classification | Intensity values in gray matter | / | RFE | SVM | AUC | LPOCV | Autism spectrum disorders | |
[23] | Battineni G., et al | 2020 | MRI | / | Classification | MRI-based features | Demographic | Wrapping | ANN, SVM, NB, KNN | AUC | 10-fold CV | Alzheimer diagnosis | |
[29] | Inglese P., et al. | 2015 | MRI | Matlab | Segmentation | Voxel by voxel | / | / | RF | Error, precision, Recall, DSC | 10-fold CV + external validation | Hyppocampus segmentation | |
[41]
Feature selection based on machine learning in MRIs for hippocampal segmentation. Comput Math Methods Med. 2015; 2015814104https://doi.org/10.1155/2015/814104 | Tangaro | 2015 | MRI | / | Segmentation | Radiomic voxel-wise | / | Sequential, Kolmogorov-Smirnof, RF | NB | DSC | CV | Hippocampal segmentation | |
[84] | Ferraro PM., et al | 2017 | MRI | SAS | Classification | Digital tractography measures | / | RF | ACC | validation color | Motor neuron disease | ||
[86] | Vai B., et al. | 2020 | MRI T1W DTI | PRoNTo software | Classification | Radiomic | Tract-basedl Statistics,Voxel-based morphometry | / | MKL, SVM | ROC AUC, sensitivity, specificity, confusion matrix | 10-folds nested CVs | Diagnosis of depression | |
Neurological | [87] | Retico | 2015 | MRI | SVM-Light | Classification | Voxels | / | RFE | SVM | AUC | 20-fold CV | Alzheimer |
[88] | Amoroso N., et al. | 2018 | MRI | R package randomForest | Classification | Voxel-wise | / | RF | SVM | Sensitivity, Specificity, AUC | 10-fold CV | Parkinson’s disease | |
[90] | Maggipinto T, et al. | 2017 | MRI | Matlab | Classification | Voxel-wise | / | Relieff | RF | ACC, AUC | 5-fold CV | Alzhaimer | |
[99] | Morisi | 2018 | MRI | Matlab | Classification | Radiomic | / | Ranking | SVM | AUC | LOOCV | Parkinson disorder | |
[100] | Bandini | 2016 | RGB Videos | / | Classification | Euclidean distances between facial features | / | / | SVM | Confusion matrix | CV | Parkinson | |
[101] | Peruzzo D., et al. | 2016 | MRI | / | Classification | Radiomic | / | regularized discriminative direction | Multiple Kernel SVM (rule-based method) | AUC ROC, ACC, Sensitivity, Specificity, Precision | LOOCV | Brain malformations | |
[110] | Nanni | 2019 | MRI | Matlab | Classification | Radiomic | / | Different methods | SVM | Accuracy, AUC | CV | Alzheimer disease diagnosis | |
[102] | Nanni | 2018 | MRI | Matlab | Classification | Radiomic | / | Mutual information, others | SVM | Accuracy | CV on public dataset | Alzheimer disease | |
[104]
Mid-sagittal plane detection for advanced physiological measurements in brain scans. Physiol Meas. 2019; 40115009https://doi.org/10.1088/1361-6579/ab4f2e | Bertacchini | 2019 | MRI | / | / | / | / | / | K-means clustering | / | / | Identification of mid-plane for neurooncological diseases | |
[105] | Lombardi A., et al. | 2019 | MRI | C++ LibSVM | Classification | Multilayer Graph, Connectivity matrix | / | SVM-RFE | SVM | ACC, TPR, TNR | 10 times repeated 10-fold CV | Schizophrenia | |
[106] | Fasano F., et al. | 2018 | MRI | Matlab | Classification | Voxel-wise | / | / | SVM | Sensitivity, Specificity, ACC | LOOCV | Mild cognitive impairment | |
[107] | Squarcina L., et al | 2017 | MRI | / | Classification | mean ROI thicknesses | / | / | SVM, KNN | ACC | LOOCV | Psychosis | |
[108] | Vasta | 2018 | MRI | R | Classification | Morphological | Clinical | RF | RF | Accuracy | Bootstrap | Psychogenic nonepilectic seizures | |
[109]
Biomarkers of eating disorders using support vector machine analysis of structural neuroimaging data: preliminary results. Behav Neurol. 2015; 2015https://doi.org/10.1155/2015/924814 | Cerasa | 2015 | MRI | MAtlab | Classification | Voxel values | / | PCA | SVM | Accuracy | 20-fold CV | Eating disorders | |
[110] | Nanni | 2019 | MRI | Matlab | Classification | Radiomic | / | Different methods | SVM | Accuracy, AUC | CV | Alzheimer disease diagnosis | |
[111] | Salvatore | 2018 | MRI | Matlab | Classification | Radiomic | / | PCA | SVM | Accuracy | 5-fold CV | Alzheimer | |
[112] | Nigro | 2019 | MRI | / | Classification | Voxel-wise | / | / | SVM | / | / | White matter changes in Parkinson | |
[113] | Kia | 2017 | Magnetoencephalography (MEG) | Matlab | / | Voxel values | / | / | Multi-feature learning | / | bootstrap | Brain maps | |
[115]
Alzheimer’s disease neuroimaging initiative. A fuzzy-based system reveals Alzheimer’s disease onset in subjects with Mild cognitive impairment. Phys Medica PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys AIFB. 2017; 38: 36-44https://doi.org/10.1016/j.ejmp.2017.04.027 | Tangaro | 2017 | MRI | LibSVM | Classification | MRI measurements | / | Statistical | FLA, SVM | AUC | CV | Alzheimer | |
[116] | Pagani | 2017 | PET | Matlab | Classification | Intensities of Volumes of interest | / | Stepwise | SVM | Accuracy | CV | Alzheimer | |
[117] | Salvatore C | 2018 | MRI | Matlab | Classification | MRI features | Clinical | Fisher | SVM | Accuracy | 5-fold CV | Alzheimer | |
[118] | Previtali | 2017 | MRI | Weka | Classification | Image space and intensity features | / | Sparse regression | SVM | Accuracy | 10-fold CV | Alzheimer disease | |
[119] | Castellazzi G., et al. | 2020 | MRI | Matlab | classification | Machine Learning | / | ReliefF | ANN, SVM, ANFIS | ACC, sensitivity, specificity, precision, NPV, AUC | 10-fold CV, 100 bootstraps | Alzheimer and vascular dementia diagnosis | |
[120] | Salvatore | 2015 | MRI | Matlab | Classification | Radiomic | / | PCA, Fisher | SVM | Accuracy | CV | Early diagnosis of Alzheimer | |
[121] | Romeo | 2017 | MRI | Weka | Classification | Radiomic | / | Sequential | SVM | Accuracy | LOOCV | Diagnosis of adrenal benign lesions | |
[122] | Lombardi A et al. | 2020 | DTI | Matlab | Regression | Connectivity features | / | PCA | LASSO | Mutual correlation coefficient | 10-fold CV | Cognitive spectrum in Alzheimer | |
[123] | De Carli F., et al. | 2019 | PET | Matlab | Classification | SUV | / | Stepwise | SVM | AUC, ACC, Younden index, TPR, TNR, positive and negative likelihoodratio | 25-fold CV, training and independent test set | Alzheimer disease detection | |
[125] | Sacca V., et al. | 2019 | MRI | Matlab, R | Classification | fMRI components | / | RF, recursivefeature elimination | RF, SVM, NB, KNN, ANN | ACC | 5-fold CV | Multiple sclerosis | |
[127] | Retico A., et al. | 2016 | MRI | SVM-Light software package | Classification | Voxel values | / | / | SVM | ACC, AUC | LOOCV | Autism spectrum disorders | |
[128] | Castaldi | 2016 | fMRI | Matlab, LibSVM | Classification | BOLD response voxels | / | Regularization | SVM | Accuracy | Bootstrap CV | Brain activity | |
[129] | C., et al. | 2020 | MRI | Matlab, Python | Regression | Fractal dimension | / | / | Regression models | Pearson coefficient | linear regression CV loop | Cerebral cortex in healthy subjects | |
[142] | Rundo L. et al. | 2018 | MRI | Matlab | Segmentation | Intensity values | / | / | Cellular Automata | DSC, JI, Sensitivity, Specificity, FPR, FNR, MAD, MAxD, HD | Validation set | Brain Necrosis | |
[173] | Amoroso | 2015 | MRI | Matlab | Segmentation | Radiomic features, voxel values | / | / | ANN | DSC | ADNI dataset multicentric | Hippocampus segmentation, Alzheimer disease | |
[10] | Garau N., et al. | 2020 | CT | Matlab | Classification | Radiomic | / | Correlation-based ierarchical clustering, ReliefF | SVM LASSO, ANN | AUC | 10-fold CV | Lung cancer diagnosis | |
[15] | Fanizzi A., et al. | 2019 | CESM | Matlab | Classification | Radiomic | / | Embedded/filter | RF | AUC, ACC, Sensitivity, Specificity, MCC | 10-fold CV | Cancer diagnosis | |
[27] | Chauvie S., et al. | 2020 | Chest Tomosynthesis | / | Classification | Radiomic | Semantic | Backward with GLM | RF, NNET, LR | ACC, Sensitivity | 10-fold cross valdidation | Cancer diagnosis | |
[24] | Crisi G., et al. | 2020 | MRI | Weka | Classification | Radiomic | / | / | ANN | Sensitivity, Specificity, AUC | 10-fold cross validation | Glioblastoma methylation | |
[30]
An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput Methods Programs Biomed. 2020; 185105134https://doi.org/10.1016/j.cmpb.2019.105134 | Brunese L., et al. | 2020 | MRI | Python | Classification | Radiomic | / | Hypothesis testing | RF | ACC | Testing and validation dataset | Cancer diagnosis | |
[31] | Basile TMA., et al | 2019 | Mammograms | / | Classification | Hough Transform | / | / | Clustering | Sensitivity, Specificity | 10-fold CV | Microcalcification detection | |
[32]
A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions. J Instrum. 2016; https://doi.org/10.1088/1748-0221/11/01/C01022 | Gallivanone F., et al. | 2016 | PET | Matlab | Segmentation | Voxel values | / | / | k-means | Mean percentage differences in phantom | 3D phantom | Metabolic volume | |
[34] | Fanizzi A., et al. | 2020 | Mammograms | Matlab | Segmentation | Radiomic | / | Embedded, wrapping | RF | AUC, ACC | 10 fold CV | Microcalcifications segmentation | |
[35] | Militello C. et al. | 2015 | MRI | Matlab | Segmentation | Intensity values | / | / | FCM | DSC, JI, Sensitivity, Specificity, FPR, FNR, FRR, MAD, MaxD, HD | unsupervised, no training | Brain tumor segmentation | |
[36] | Rundo L. et al. | 2017 | MRI | Matlab | Segmentation | Intensity value | / | / | multi-spectral FCM | DSC, JI, Sensitivity, Specificity, FPR, FNR, MAD, MaxD, HD | LOOCV | Prostate segmentation | |
[37] | Rundo L. et al. | 2017 | MRI, PET | Matlab | Segmentation | Intensity values | PET/MRI fusion | / | FCM, Random-walks | DSC, HD, MHD | Expert radiologist | Brain tumor segmentation | |
[39] | Comelli A., et al. | 2019 | PET | Matlab | Segmentation | BTV | / | / | LAC-KNN | TPR, TNR, Precision, ACC, error, DSC, HD | 5-Fold CV | Different cancer types | |
[40] | Giannini V., et al. | 2016 | MRI | / | Classification, Segmentation | Radiomic | / | / | ANN | Confusion Matrix | Validation set | Prostate cancer detection | |
[45] | Bevilacqua V., et al. | 2019 | Tomosynthesis | Matlab | Classification | Deep Learning | / | / | SVM, KNN, NBA, DT, LDA | ACC, Specificity, Sensitivity | Validation set | Breast lesions | |
[81]
MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol. 2020; 128109043https://doi.org/10.1016/j.ejrad.2020.109043 | Gitto S., et al. | 2020 | MRI | PyRadiomics, Weka | classification | Radiomic | / | RF | AdaBoost | AUC, F-score, Matthews corr func, | 10-fold CV, test set | Bone chondrosarcoma diagnosis | |
[85] | Gallivanone F., et al. | 2019 | CE-MRI | R-package e1071 | Classification | Radiomic, miRNomic | micro RNA | / | SVM | AUC | validation se | Breast Cancer diagnosis | |
[103] | Ugga | 2019 | MRI | Weka | Classification | Radiomic | / | Relieff, ranking, others | KNN | Sensitivity, specificity, precision | Test set | Proliferation of pituitary tumor | |
[114]
Texture analysis and multiple-instance learning for the classification of malignant lymphomas. Comput Methods Programs Biomed. 2020; 185105153https://doi.org/10.1016/j.cmpb.2019.105153 | Lippi M., et al. | 2020 | PET | Matlab, Python | Classification | Radiomic | / | RF | SVM, RF | Precision, Sensitivity, ACC | LOOCV | Lymphoma diagnosis | |
[130] | Losurdo L., et al. | 2019 | CESM | Matlab | Classifican | Radioomics | / | Principal Component Analysis | SVM | ACC, Sensibility, Specificity | 100-fold CV | Breast Cancer diagnosis | |
[131] | D’Amico et al | 2020 | MRI | C++, ITK | Classification | Radiomic | / | Training with input selection and testing (TWIST) | KNN | Sens, spec, acc | CV | Breast cancer benign/malignant | |
[132]
Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study. Sci Rep. 2017;7.; https://doi.org/10.1038/srep40683 | Taroni | 2017 | Optical imaging | / | Classification | Tissue absorption map | / | / | EML | Sensitivity, specificity, AUC | / | Breast cancer diagnosis | |
Cancer diagnosis and characterization | [146] | Astorino A., et al. | 2020 | Dermosco-pic images | Matlab | Classification | melanomas | / | / | Multiplenstance Learning | ACC, Sensitivity, Specificity | 5-fold CV, 10-fold CV, LOOCV | Melanoma detection |
[133] | Castaldo | 2016 | DCE-MRI | Matlab | Classification | Radiomic | / | / | NB, SVM, RF | Sens, spec, acc, AUC | Bootstrap | Breast cancer receptor status | |
[136]
The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study). J Ultrasound. 2020; https://doi.org/10.1007/s40477-020-00503-5 | Chiappa V., et al. | 2020 | US | TRACE4 | Classification | Radiomic | / | / | SVM | ACC, Sensitivity, Specificity, AUC, Standard Deviation | 10-fold CV | Malignancy of ovarian masses | |
[137] | Granata V, et al | 2020 | MRI | Matlab | Classification | DWI- and DKI-derived parameters | Neighbourhood component analysis (NCA) | Linear classifier, DT | ACC | Testing set | Mutation in liver metastasis | ||
[138] | Stanzione | 2019 | MRI | Weka | Classification | Radiomic | / | Different feature selection methods | NB, SVM, others | Accuracy, AUC | 10-fold CV | Prostate ca extracapsular | |
[139]
Deep myometrial infiltration of endometrial cancer on MRI: A radiomics-powered machine learning pilot study. Acad Radiol. 2020; https://doi.org/10.1016/j.acra.2020.02.028 | Stanzione | 2020 | MRI | Python, Weka | Classification | Radiomic | / | RF | EML | Sens, spec, acc, AUC | 10–fold CV | Diagnosis of endometrial cancer infiltration | |
[140]
PI-RADS 3 lesions: role of prostate MRI texture analysis in the identification of prostate cancer. Curr Probl Diagn Radiol. 2019; https://doi.org/10.1067/j.cpradiol.2019.10.009 | Giambelluca D., et al | 2019 | MRI | Matlab | Classification | Radiomic | T2WI, ADC | / | GLM, DA | ROC, AUC | 10-fold CV | Prostate cancer identification | |
[141]
MRI-based radiomics signature for localized prostate cancer: a new clinical tool for cancer aggressiveness prediction? Sub-study of prospective phase II trial on ultra-hypofractionated radiotherapy (AIRC IG-13218). Eur Radiol. 2020; https://doi.org/10.1007/s00330-020-07105-z | Gugliandolo S.G., et al. | 2020 | MRI | Matlab, SAS | Classification | Radiomic | / | Stepwise FS | LR | AUC | LOOCV | Prostate cancer aggressiveness | |
[144] | Stefano A., et al. | 2020 | PET | Matlab CGITA | Classification | Radiomic | / | correlation matrix,point-biserial correlation coefficient | DA | TPR, TNR,NPV, Error, ACC, AUCSensitivity, Specificity | 5-fold CV | Brain metastasis segmentation | |
[145] | Lopez Torres | 2015 | CT | Commercial CAD | Classification | Radiomic | / | / | ANN | Sensitivity | Multicentric public databases | Lung cancer diagnosis | |
[147] | Romeo | 2020 | CT | KNIME | Classification | Radiomic | / | / | KNN, NB, ANN | Accuracy | 10-fold CV | Head and neck grading, nodal status | |
[148] | Stanzione A., et al | 2020 | MRI | KNIME | Classification | Radiomic | / | correlation, wrapper | DT, EML | ACC | 10-fold CV | Grading renal cell carcinoma | |
Other | [13] | Nero C., et al | 2020 | US | R, Python | Classification | Radiomics | / | pair-wise Pearson correlation test, forward features selection | SVM, EML,LR | ACC | Testing and validation dataset, 5-fold CV | Breast cancer susceptibility genes from ovarian US |
[19] | Moccia | 2018 | RGB camera | Matlab | Classification | Radiomic | / | PCA | SVM | Accuracy | LOOCV | Liver transplant steatosis | |
[21] | Militello C. et al. | 2015 | MRI | Matlab | Segmentation and classification | Intensity values | / | / | FCM | DSC, JI, Sensitivity, Specificity | unsupervised, no validation | Uterine Fibroids | |
[80] Recenti M, Ricciardi C, Gìslason M, Edmunds K, Carraro U, Gargiulo P. Machine Learning Algorithms Predict Body Mass Index Using Nonlinear Trimodal Regression Analysis from Computed Tomography Scans. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterr. Conf. Med. Biol. Eng. Comput. – MEDICON 2019, Cham: Springer International Publishing; 2020, p. 839–46. | Recenti M., et al | 2019 | CT | Python ML library Scikit-Learn | Regression, Classification | Image descriptors of muscle | Clinical | RF, DT, EML | Coefficient of Determination (R2), JI | 8,12, 16, 18-fold CV | Body mass index | ||
[82] | Romeo V., et al. | 2019 | US | KNIME | Classification | Radiomic | / | / | RF ,KNN, NB, ANN | Precision, Sensitivity, Specificity | 10-fold CV | Placenta accrete | |
[124] | Rosati S., et al. | 2020 | CT | Segmentation | Radiomic | GA | KNN, DT, SVM | DSC | Validation set | Active bone marrow | |||
[143] | Rundo L. et al. | 2019 | MRI | Python | Segmentation | / | / | / | Genetic Algorithm | Maximum absolute Distance, Hausdorff Distance (HD) | / | Uterine fibroids | |
[155] | Matos J., et al. | 2020 | CT | R | Classification | CT descriptors | Clinical | Single-feature AUC | LR, SVM, DT | ACC, Sensibility, Specificity, PPV, NPV, AUC | Testing and validation dataset,10-times repeated 5-fold CV | COVID-19 outcome prediction | |
[156]
The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual x-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: A proposal from an observational study. PLoS One. 2018; 13e0190477 | Ulivieri F.M., et al. | 2018 | dual x-ray absorptiometry | / | Classification | Quantitative, qualitative bone markers | / | / | ANN | Semantic Map | / | Osteoporosis | |
[161] | Cordelli E., et al. | 2018 | dual channel red blood cells microscopy images | Matlab + LIBSVM | Classification | Radiomic | / | PCA | SVM, ANN, KNN | ACC | LOOCV | Diabetes | |
Cardiovascular | [8]
Application of data mining in a cohort of Italian subjects undergoing myocardial perfusion imaging at an academic medical center. Comput Methods Programs Biomed. 2020; 189105343https://doi.org/10.1016/j.cmpb.2020.105343 | Ricciardi C., et al. | 2020 | SPECT | Knime | Classification | Radiomic | Clinical | / | NB,KNN,RF,GB | ACC, error, precision, recall, specificity, sensitivity | K-fold CV | Coronary arterial disease diagnosis |
[83] | Ricciardi C., et al. | 2020 | CT | KNIME | Classification | Radiomic | / | / | RF, ADA-Boost, GB | ACC, Sensitivity, Specificity, Precision, AUC | 12-fold CV | Cardiovascular risk | |
[150]
Left atrial trajectory impairment in hypertrophic cardiomyopathy disclosed by geometric morphometrics and parallel transport. Sci Rep. 2016;6.; https://doi.org/10.1038/srep34906 | Piras et al. | 2016 | Echocardiography | / | Classification | Shape, landmark coordinates, trajectories | / | Filtering | SVM | Accuracy, AUC | LOOCV | Left Atrial trajectory impairment | |
[151] | Bellavia et al. | 2020 | US | R (CARET, GLMNET, E1071) | Classification | Image measurements | Clinical, biochemical | / | NB | Accuracy, AUC | LOOCV, two italian centers | Right ventricular failure | |
[152]
A machine learning-based approach to directly compare the diagnostic accuracy of myocardial perfusion imaging by conventional and cadmium-zinc telluride SPECT. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2020; https://doi.org/10.1007/s12350-020-02187-0 | Cantoni et al | 2020 | SPECT | KNIME | Classification | Image measurements | / | / | RF, KNN | Accuracy | 10-fold CV | Coronary artery disease | |
[154] | Maffei N., et al. | 2020 | CT | Python | Segmentation | / | / | / | HC | DSC, Average HD | Validaition set | Cardiac sub structures | |
Pathology and microscopy | [14] | Barricelli et al. | 2019 | Histochemical images | MAtlab | Classification | Pixel colors | / | / | Bayes, decision trees | / | / | Tumor protein ki67 |
[20]
A support vector machine classification of thyroid bioptic specimens using MALDI-MSI data. Adv Bioinforma. 2016; 2016e3791214https://doi.org/10.1155/2016/3791214 | Galli et al. | 2016 | Cytological smear | / | Classification | Pixel values | / | / | SVM | Accuracy, AUC | Test set | ||
[25] | Salvi M., et al. | 2019 | Histopathology images | Matlab | Classification | Radiomic | / | / | ANN | Precision, Recall, F Score | validation set | Cancer characterisation | |
[46]
Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Comput Biol. 2019; 15e1006269https://doi.org/10.1371/journal.pcbi.1006269 | Bizzego A., et al. | 2019 | Digital Pathology | Phyton | Classification | Deep Learning | / | / | SVM, RF | confusion matrix,ACC, MCC | 10 times repeated 5fold CV | Pathology | |
[38] | Militello C. et al | 2020 | cells culture image | Matlab | Segmentation | Radiomic | / | / | spatial FCM | Pearson’s correlation coefficient | surviving fraction | Cell colony detection | |
Cancer prognosis and outcome prediction | [5] Alongi P, Laudicella R, Stefano A, Caobelli F, Comelli A, Vento A, et al. Choline PET/CT features to predict survival outcome in high risk prostate cancer restaging: a preliminary machine-learning radiomics study. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharmacol IAR Sect Soc Of 2020. https://doi.org/10.23736/S1824-4785.20.03227-6. | Alongi P., et al. | 2020 | PET | Matlab CGITA | Classification | Radiomic | / | NCA | DA | Sensitivity, Specificity, ACC | 5-fold CV | Prostate cancer survival prediction |
[7] | Avanzo M., et al. | 2020 | CT | Matlab | Classification | Radiomic | Dosomic | Stepwise with GLM | SVM, EML, NB | Sensitivity, specificity, AUC | 5-foldCV | RT late fibrosis prediction | |
[11] | Botta F., et al. | 2020 | CT | R, SAS | Classification, Regression | Radiomic | Clinical | Overall Concordance Correation Coefficient ANOVA | LASSO | AUC | Validation set | Lung cancer survival | |
[26] | D’Amico N.C., et al. | 2019 | MRI | MatlabIBEX | Classification | Radiomic | Clinical | Mann Whitney U test | RF | ACC,precision, recall and AUC | 10-fold crossValidation | Cancer outcome prediction | |
[28] | Ferrari R., et al. | 2019 | MRI | Python | Classification | Radiomic | / | 2-tail t-Student | RF | AUC, ACC, Sensitivity, Specificy | validation set | Cancer outcome prediction | |
[33] | Schenone D., et al. | 2020 | CT | 3DSlicer + Slicer radiomics (pyradiomics library) | Unsupervised | Radiomic | / | / | hard C-means clustering | // | // | Myeloma prognosis | |
[163] Talamonti C, Piffer S, Greto D, Mangoni M, Ciccarone A, Dicarolo P, et al. Radiomic and Dosiomic Profiling of Paediatric Medulloblastoma Tumours Treated with Intensity Modulated Radiation Therapy. In: Vento M, Percannella G, Colantonio S, Giorgi D, Matuszewski BJ, Kerdegari H, et al., editors., Cham: Springer International Publishing; 2019, p. 56–64. | Talamonti C., et al. | 2019 | MRI, CT, Dose distribution images | PyRadiomics | Classification | Radiomic, Dosiomic | / | RFE | SVM, ANN | Sensitivity, Specificity, ACC, AUC | LOOCV | Medulloblastoma prognosis | |
[164] | Pota M., et al. | 2017 | CT | Python | Classification | Radiomic | / | / | FLA, NB | ACC, Sensitivity, Specificity | 10-fold CV, LOOCV | Toxicity after RT | |
[165] | Leccisotti L., et al. | 2020 | PET | R | Regression | PET SUV parameters | Clinical | Backward elimination | LR | AUC | Testing and validation dataset, 5-fold CV | Prognosis of anal cancer | |
Radiotherapy planning | [167] | Seregni M., et al. | 2016 | MRI | Matlab | Regression | Tumor trajectories | / | / | Autoregressive linear prediction (AR), SVM | Tracking error RMS | Testing and validation dataset | Motion prediction in RT |
[168] | Ermacora D., et al. | 2015 | CT-US | C | Segmentation | Shape, texture | / | Gabor | In-house supervised ML | mean distance to conformity | Expert radiologist contours | Prostate contouring for RT | |
[170] | Guidi G., et al. | 2016 | CBCT, MVCT | Iron-Python, Matlab | Classification | Dose and volumes of ROIs | ART | / | SVM | clinical validation of timepoint suggestion | cross-correlation, independent set | RT adaptive planning | |
[171] | Guidi G., et al. | 2015 | CT, MVCT | Matlab | Classification | OAR Volume, DVH | / | / | SVM, K-Means | DSC, JI | RT adaptivelanning | ||
[172] | Guidi G., et al. | 2016 | CT, MVCT | Matlab, Python scripting in RayStation | Classification | Dose and volumes of ROIs | / | / | SVM, cluster analysis | AUC | external validation | RT adaptivelanning |
- Brunese L.
- Mercaldo F.
- Reginelli A.
- Santone A.
- Gallivanone F.
- Interlenghi M.
- Canervari C.
- Castiglioni I.
- Tangaro S.
- Amoroso N.
- Brescia M.
- Cavuoti S.
- Chincarini A.
- Errico R.
- et al.
- Polsinelli M.
- Cinque L.
- Placidi G.
- Bria A.
- Marrocco C.
- Tortorella F.
- Bizzego A.
- Bussola N.
- Chierici M.
- Maggio V.
- Francescatto M.
- Cima L.
- et al.
- Salvi M.
- Molinaro L.
- Metovic J.
- Patrono D.
- Romagnoli R.
- Papotti M.
- et al.
- Duggento A.
- Guerrisi M.
- Toschi N.
- Scimeca M.
- Urbano N.
- Bonanno E.
- et al.
- Mushtaq J.
- Pennella R.
- Lavalle S.
- Colarieti A.
- Steidler S.
- Martinenghi C.M.A.
- et al.
Mendizabal A, Tagliabue E, Brunet J-N, Dall’Alba D, Fiorini P, Cotin S. Physics-Based Deep Neural Network for Real-Time Lesion Tracking in Ultrasound-Guided Breast Biopsy. In: Miller K, Wittek A, Joldes G, Nash MP, Nielsen PMF, editors. Comput. Biomech. Med., Cham: Springer International Publishing; 2020, p. 33–45.
- Fiorentino M.C.
- Moccia S.
- Capparuccini M.
- Giamberini S.
- Frontoni E.
Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, et al. Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy. MedRxiv 2020:2020.04.08.20040907. https://doi.org/10.1101/2020.04.08.20040907.
Brunetti A, Cascarano GD, De Feudis I, Moschetta M, Gesualdo L, Bevilacqua V. Detection and Segmentation of Kidneys from Magnetic Resonance Images in Patients with Autosomal Dominant Polycystic Kidney Disease. In: Huang D-S, Jo K-H, Huang Z-K, editors., Cham: Springer International Publishing; 2019, p. 639–50.
- Panic J.
- Defeudis A.
- Mazzetti S.
- Rosati S.
- Giannetto G.
- Vassallo L.
- et al.
- Piantadosi G.
- Sansone M.
- Fusco R.
- Sansone C.
Lizzi F, Laruina F, Oliva P, Retico A, Fantacci ME. Residual Convolutional Neural Networks to Automatically Extract Significant Breast Density Features. In: Vento M, Percannella G, Colantonio S, Giorgi D, Matuszewski BJ, Kerdegari H, et al., editors., Cham: Springer International Publishing; 2019, p. 28–35.
- Rocca M.A.
- Anzalone N.
- Storelli L.
- Del Poggio A.
- Cacciaguerra L.
- Manfredi A.A.
- et al.
- Ferrari E.
- Bosco P.
- Calderoni S.
- Oliva P.
- Palumbo L.
- Spera G.
- et al.
- Brunese L.
- Mercaldo F.
- Reginelli A.
- Santone A.
- Basaia S.
- Agosta F.
- Wagner L.
- Canu E.
- Magnani G.
- Santangelo R.
- et al.
Lizzi F, Laruina F, Oliva P, Retico A, Fantacci ME. Residual Convolutional Neural Networks to Automatically Extract Significant Breast Density Features. In: Vento M, Percannella G, Colantonio S, Giorgi D, Matuszewski BJ, Kerdegari H, et al., editors., Cham: Springer International Publishing; 2019, p. 28–35.
- Comes M.C.
- Filippi J.
- Mencattini A.
- Casti P.
- Cerrato G.
- Sauvat A.
- et al.
- Barucci A.
- Andreini P.
- Bonechi S.
- Bianchini M.
- Mecocci A.
- Scarselli F.
Systematic review
Results of systematic review
Clinical field | Ref | Author | Year | Image | Platform | Purpose of CNN | CNN Architecture | Training Modality | Evaluation metrics | Validation | ClinicClinical indication |
---|---|---|---|---|---|---|---|---|---|---|---|
Neurological | [4]
Deep learning reveals Alzheimer’s disease onset in MCI subjects: results from an international challenge. Mach Learn Neuroimaging Chall Autom Diagn Alzheimer’s Dis. 2018; 302: 3-9https://doi.org/10.1016/j.jneumeth.2017.12.011 | Amoroso N., et al. | 2018 | MRI | R | Classification | Ad hoc | Feature extractor | overall accuracy, recall and precision | 10-fold cross-validation, independent test set | Alzheimer disease detection |
[9] | Amoroso N., et al. | 2019 | MRI | “h2o” R package | Regression | Ad hoc | Feature Extractor + RR or LASSO | MAE, RMSE, and Pearson’s correlation | 100 times repeated 10-fold CV | Brain Age Modelling | |
[59] | Barbieri M., et al. | 2018 | MR | Python package Keras with TensorFlow | Image Reconstruction | Ad Hoc | End to End | Predicted vs ground truth T1 | Test set | MR fingerprinting | |
[70] | Falvo A., et al. | 2020 | MRI | Keras | Image Reconstruction | U-Net | End to End | SSIM | Validation set | Multiple sclerosis | |
[71]
Deep learning on conventional magnetic resonance imaging improves the diagnosis of multiple sclerosis mimics. Invest Radiol. 2020; https://doi.org/10.1097/RLI.0000000000000735 | Rocca et al. | 2020 | MRI | Keras with Theano backend | Classification | CNN | End to End | Accuracy, sensitivity, specificity | Test set | Multiple sclerosis | |
[72]
Dealing with confounders and outliers in classification medical studies: the autism spectrum disorders case study. Artif Intell Med. 2020; 108101926https://doi.org/10.1016/j.artmed.2020.101926 | Ferrari et al. | 2020 | MRI | / | Classification | Autoencoders | / | / | / | Autism | |
[76]
Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 2019; 21101645https://doi.org/10.1016/j.nicl.2018.101645 | Basaia S., et al. | 2019 | MRI | Python Theano | Classification | Ad Hoc | End to End, transfer learning | Accuracy | Validation, testing set | Alzheimer diseaseand mild cog impairment | |
[89] | Aslani et al. | 2019 | MRI | Keras with Tensorflow | Segmentation | Resnet50 modified | End to End | DSC | Test set | Multiple sclerosis | |
Cancer detection and characterization | [44] | Banzato T., et al. | 2019 | MRI | Matlab | Classification | Inception-V3, Alexnet | Transfer Learning | AUC, sensitivity, specificity | Leave one out | Meningioma histopathological grading |
[45] | Bevilacqua V., et al. | 2019 | Tomosynthesis | / | Classification | Ad hoc | End to End | ACC, TPR, TNR | training(and test set ) | Breast cancer diagnosis | |
[51]
A random initialization deep neural network for discriminating malignant breast cancer lesions. Annu Int Conf IEEE Eng Med Biol Soc Eng Med Biol Soc Int Conf. 2019; 2019: 912-915https://doi.org/10.1109/EMBC.2019.8856740 | Duggento et al. | 2019 | Mammography | Keras Tensorflow | Classification | Ad Hoc | End to End | ACC, PPV, TPR, TNR, FPR, FNR, AUC, F2 score, F1 score | validation and test set | Cancer diagnosis | |
[52] | Brunese L. et al | 2020 | MRI | PyRadiomics, Keras TensorFlow | Regression | Ad Hoc | End to End | Sensitivity, specificity, ACC, PP, | 5-fold CV | Cancer characterization | |
[54] Mendizabal A, Tagliabue E, Brunet J-N, Dall’Alba D, Fiorini P, Cotin S. Physics-Based Deep Neural Network for Real-Time Lesion Tracking in Ultrasound-Guided Breast Biopsy. In: Miller K, Wittek A, Joldes G, Nash MP, Nielsen PMF, editors. Comput. Biomech. Med., Cham: Springer International Publishing; 2020, p. 33–45. | Mendizabal et al. | 2020 | US | PyTorch | Registration | U-Net | End to End | registration errors | in-phantom | Biopsy guidance | |
[58] | Famouri et a. | 2020 | Mammography | Keras Tensorflow | Registration | Ad hoc based on ResNet50 | Transfer learning | Mean Squared Error | split in training and validation | Breast cancer diagnosis | |
[60] | Kirienko et a. | 2018 | CT-PET | Python PyTorch | Classification | Ad Hoc | Feature extraction | AUC, ACC, Recall, Specificity | Test set | Cancer characterization | |
[66]
Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks. Artif Intell Med. 2020; 103101781https://doi.org/10.1016/j.artmed.2019.101781 | Piantadosi G., et al. | 2020 | MRI | Python | Segmentation | U-Net | End to End | ACC, Sensitivity, Specificity, DSC | 10-fold CV | Segmentation of breast parenchyma | |
[64]
A convolutional neural network based system for colorectal cancer segmentation on MRI images. 42nd Annu Int Conf IEEE Eng Med Biol Soc EMBC. 2020; 2020: 1675-1678https://doi.org/10.1109/EMBC44109.2020.9175804 | Panic J., et al. | 2020 | MRI | Python, Keras, Tensorflow | Segmentation | Ad Hoc | End-to-End | DSC, Precision | Testing set | Colorectal cancer segmentation | |
[67] | Valvano G., et al. | 2019 | Mammography | Python Tensorflow | Classification, Segmentation | Ad Hoc | End to End | Accuracy | Validation and Test sets | Microcalcification segmentation | |
[68] | Nanni et al. | 20,202 | Various | Classification, segmentation | Deeplabv3+ | End to End | Accuracy | CV | Various tasks incl. breast cancer | ||
[97] | Soomro et al. | 2019 | MRI | Caffe | Segmentation | Modified MSDNet | End to End | DSC | CV | Colorectal cancer segmentation | |
[98] | Sena et al. | 2019 | Histology images | Pytorch | Classification | Ad hoc | End to End | Accuracy | Test set | Colorectal cancer detection | |
[134] | De Logu et al. | 2020 | Histopathological images | Matlab | Classification | Inception-ResNet-v2 | Transfer learning | Accuracy, F-score, Cohen’s kappa | Validation set | Melanoma detection | |
[135] | Ligabue et al. | 2020 | Immunofluorescence | / | Classification | Resnet101 | End to End | Accuracy | Test set | Characterization of kidney biopsy | |
Other | [42]
A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognit Lett. 2020; https://doi.org/10.1016/j.patrec.2020.10.001 | Polsinelli M., et al. | 2020 | Xr | Matlab | Classification | SqueezeNet | End to End, transfer learning | ACC, Sensitivity, Specificity, Precision , F1 score | validation and test se.t, 10-fold CV | COVID-19 detection |
[43]
Addressing class imbalance in deep learning for small lesion detection on medical images. Comput Biol Med. 2020; 120103735https://doi.org/10.1016/j.compbiomed.2020.103735 | Bria A., et al. | 2020 | Mammograms, fundus images | C++ OpenCV | Classification | VGG | End to End | AUC, mean sensitivity, TP, TPF | 2-fold CV | Microcalcification in mammograms, microaneurysm in retinal images | |
[47]
Fully automated quantitative assessment of hepatic steatosis in liver transplants. Comput Biol Med. 2020; 123103836https://doi.org/10.1016/j.compbiomed.2020.103836 | Salvi M., et al. | 2020 | Histology | Keras | Segmentation | ResNet34 | Feature Extraction | ACC, MAE | Training and test set | Hepatic steatosis | |
[48] | Galbusera F., et al. | 2020 | XR | Python, Keras | Classi-fication | ResNet101 | End-to-End | ACC, error analysis | Indipendent dataset | Vertebre description | |
[53]
Initial chest radiographs and artificial intelligence (AI) predict clinical outcomes in COVID-19 patients: analysis of 697 Italian patients. Eur Radiol. 2020; https://doi.org/10.1007/s00330-020-07269-8 | MushTaq et al. | 2020 | XR | qXR v2.1 c2, Qure.ai Technologies | Classification | Ad hoc | End to End | AUC, sensitivity, Two-tailed tests | validation set | COVID outcome prediction | |
[55] | Rundo L. et al. | 2019 | MRI | Keras (TensorFlow backend) | Segmentation | Modified U-net | End to End | DSC, Sensitivity, Specificity, MAD, MaxD, HD | 4-fold CV (three datasets) | Prostate segmentation | |
[56] | Spampinato C. et al. | 2017 | XR | Python | Regression | Ad hoc or OverFeat, GoogleNet, OxfordNet | End to End, Transfer Learning | MAE | 5-fold CV | Skeletal bone age | |
[61] Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, et al. Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy. MedRxiv 2020:2020.04.08.20040907. https://doi.org/10.1101/2020.04.08.20040907. | Castiglioni I. et al. | 2020 | Chest XR | Trace4 | Classification | ResNET50 | End to End | ACC, sensitivity, specificity, PPV, NPV, AUC | 10-fold CV, independent test dataset | COVID-19 diagnosis | |
[62] Brunetti A, Cascarano GD, De Feudis I, Moschetta M, Gesualdo L, Bevilacqua V. Detection and Segmentation of Kidneys from Magnetic Resonance Images in Patients with Autosomal Dominant Polycystic Kidney Disease. In: Huang D-S, Jo K-H, Huang Z-K, editors., Cham: Springer International Publishing; 2019, p. 639–50. | Brunetti A. et al. | 2019 | MRI | / | Segmentation | Ad Hoc | Ent to End | Acc, TPR, TNR, Confusion matrix, Boundary F1 Score, Jaccard Similarity Coefficient | training, validation and test set | Segmentation of kidneys in polycystic disease | |
[63] | Bevilacqua V. et al. | 2019 | MRI | / | Segmentation | VGG-16 | End to End | confusion matrix, ACC, BF score, precision, recall, Jaccard sim coef | 5-fold CV, test set | Polycystic kidney disease | |
[73] | Walsh S.L.F. et al. | 2018 | CT | TensorFlow | Classification | Based on Google Inception | End to End | ACC, AUC, TPR, TNR, weighted k coefficient of interobserver agreement | validation and test set (test set A and test set B) | Fibrotic lung disease | |
[75]
Explainable deep learning for pulmonary disease and coronavirus COVID-19 Detection from X-rays. Comput Methods Programs Biomed. 2020; 196105608https://doi.org/10.1016/j.cmpb.2020.105608 | Brunese L. et al. | 2020 | Chest XR | Keras | Classification | VGG16 - Visual Geometry Group | Transfer learning | TPR, TNR, F-score, ACC | cross-validation, training and independent test set | COVID-19 detection | |
[91]
Stacked sparse autoencoder networks and statistical shape models for automatic staging of distal femur trochlear dysplasia. Int J Med Robot Comput Assist Surg MRCAS. 2018; 14e1947https://doi.org/10.1002/rcs.1947 | Cerveri et al. | 2018 | CT | / | Classification | Sparse stacked Autoencoders | End to end | Accuracy, sensitivity, specificity | Test set | Femur Dysplasia | |
[92] | Tartaglione et al. | 2020 | Radiographs | Pytorch 1.4 | Classification | ResNet-18, Resnet-50, COVID-Net, DenseNet-121 | Transfer learning | Accuracy, AUC | Test on different public datasets | COVID-19 diagnosis | |
[93] | Patrini et al. | 2020 | Laryngoscopic videos | Keras with TensorFlow backend | Classification | Inception – ResNet V2, others | Features extraction+ SVM | Accuracy | CV | Selection of informative frames | |
[126] | Galbusera et al. | 2018 | MRI | Caffe, Pytorch, TensorFlow | Resolution Enhancement, Image synthesis | GAN | End to End | k-coefficient of agreement between images | Test set | Generate image different MRI modality | |
[157]
Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach. Eur J Radiol. 2020; 133109373https://doi.org/10.1016/j.ejrad.2020.109373 | Tanzi et al. | 2020 | Radiograophy | Keras, Tensorflow | Classification | InceptionV3 , CNN | End to End | Accuracy, AUC | Test set | Classification of fractures | |
[158]
Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2019; 28: 951-960https://doi.org/10.1007/s00586-019-05944-z | Galbusera et al. | 2019 | Radiographs | Keras with TensorFlow backend | Regression | AD hoc | End to End | Standard error | Testing set | Spine deformities | |
[159] | Scarpa et al. | 2020 | Corneal Images | / | Classification | Ad hoc | End to end | Accuract | Test set | Diabetes diagnosis | |
[160] | Lepore et al. | 2020 | Fluorescein Angiography | Keras for R with Tensorflow | Classification | Ad hoc | End to end | Accuracy | Test set | Retinopathy | |
[162] | Casella et al. | 2019 | Fetoscopic images | Pytorch | Segmentation | Adversarial network | End to end | DSC | Validation and testing sets | Inter-foetal membrane | |
Cardiovascular | [74] | Moccia S. et al. | 2020 | CE – MRI | TensorFlow | Segmentation | Modified ENet | End to End | ACC, TPR, TNR, DSC | Leave one-patient-out, test set | Scar in left ventricle |
[95] | Muscogiuri G. et al. | 2020 | CCTA | Keras R package | Classification | Ad hoc | End to End | AUC, ACC, Accuracy, sensitivity, specificity | 4-fold CV | Coronary artery disease | |
[149] | Martini et al. | 2020 | MRI | Keras, Tensorflow | Classification | Ad hoc | End to Edn | AUC | Test set | Cardiac amyloidosis | |
[153] | Fantazzini et al. | 2020 | CT Angiography | Keras with Tensorflow | Segmentation | 2D U-Net | End to End | DSC | Test set | Aortic lumen segmentation | |
Pathology and microscopy | [46]
Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Comput Biol. 2019; 15e1006269https://doi.org/10.1371/journal.pcbi.1006269 | Bizzego A., et al. | 2019 | Digital Pathology | Python | Classification | VGG, ResNet, Inception | Feature Extraction | confusion matrix, MCC ACC | 10 × 5 fold-cross validation | Digital pathology |
[49] | Merone M., et al. | 2019 | Fluorence intensity | / | Classification | ScatNet | Feature Extraction | confusion and cost matrix, ACC, recal, precision, F1 score. | Fluorescence | ||
[50] | Mencattini A., et al. | 2020 | time-lapse microscopy imaging | Python | Image Reconstruction | AlexNet | Transfer Learning | ACC | Test set | Cell trajectory | |
[77]
Multi-scale generative adversarial network for improved evaluation of cell–cell interactions observed in organ-on-chip experiments. Neural Comput Appl. 2020; https://doi.org/10.1007/s00521-020-05226-6 | Comes M.C., et al. | 2020 | Organs on a chip, TL Microscopy | / | Image Reconstruction | GAN | end to end | concordance correlation coefficient, K-S test | / | Cell-interactions in organ on chip experiments | |
[79]
Image generation by GAN and style transfer for agar plate image segmentation. Comput Methods Programs Biomed. 2020; 184105268https://doi.org/10.1016/j.cmpb.2019.105268 | Andreini et al. | 2020 | Agar plates | Tensorflow | Segmentation | GAN | End to End | JI | Bacteria segmentation | ||
[94] | Dimauro G., et al. | 2019 | Nasal Cytology | Python Keras | Classification | Ad hoc | End to End | Sensitivity, Specificity, ACC | Validation set | Cells in nasal cytology | |
Cancer prognosisand outcome prediction | [65] | Giannini V., et al. | 2020 | CT | Matlab | Segmentation | U-Net | End-to-End | Precision | Validation set | Liver metastis segmentation and outcome prediction |
[166]
Integrating deep and radiomics features in cancer bioimaging. IEEE Conf Comput Intell Bioinforma Comput Biol CIBCB. 2019; 2019: 1-8https://doi.org/10.1109/CIBCB.2019.8791473 | Bizzego A., et al. | 2019 | CT-PET | Python Theano | Classification | Ad hoc | Feature Extractor | MCC, TPR, TNR, ACC | 5 fold cross validation (10 repetitions), independent test set | Head and neck cancer prognosis | |
Radiotherapy planning | [96]
Fully automatic catheter segmentation in MRI with 3D convolutional neural networks: application to MRI-guided gynecologic brachytherapy. Phys Med Biol. 2019; 64165008https://doi.org/10.1088/1361-6560/ab2f47 | Zaffino et al. | 2019 | MRI | Theano, Lasagne | Segmentation | 3D-U-net | End to End | DSC | 4-fold CV | Cathether segmentation brachytherapy |
[169]
A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2020; 153: 205-212https://doi.org/10.1016/j.radonc.2020.10.018 | Cusumano et al. | 2020 | MRI | Keras | Image synthesis | cGAN | End to End | Mean absolute error of Hounsfield Units | Test set | Synthesis of CT for RT planning |


Used software tools
Recenti M, Ricciardi C, Gìslason M, Edmunds K, Carraro U, Gargiulo P. Machine Learning Algorithms Predict Body Mass Index Using Nonlinear Trimodal Regression Analysis from Computed Tomography Scans. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterr. Conf. Med. Biol. Eng. Comput. – MEDICON 2019, Cham: Springer International Publishing; 2020, p. 839–46.
- Gitto S.
- Cuocolo R.
- Albano D.
- Chianca V.
- Messina C.
- Gambino A.
- et al.
- Ricciardi C.
- Cantoni V.
- Improta G.
- Iuppariello L.
- Latessa I.
- Cesarelli M.
- et al.
- Amoroso N.
- Diacono D.
- Fanizzi A.
- La Rocca M.
- Monaco A.
- Lombardi A.
- et al.
- Cerveri P.
- Belfatto A.
- Baroni G.
- Manzotti A.
- Bizzego A.
- Bussola N.
- Chierici M.
- Maggio V.
- Francescatto M.
- Cima L.
- et al.
Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, et al. Artificial intelligence applied on chest X-ray can aid in the diagnosis of COVID-19 infection: a first experience from Lombardy, Italy. MedRxiv 2020:2020.04.08.20040907. https://doi.org/10.1101/2020.04.08.20040907.
- Fiorentino M.C.
- Moccia S.
- Capparuccini M.
- Giamberini S.
- Frontoni E.
- Comes M.C.
- Filippi J.
- Mencattini A.
- Casti P.
- Cerrato G.
- Sauvat A.
- et al.
Brunetti A, Cascarano GD, De Feudis I, Moschetta M, Gesualdo L, Bevilacqua V. Detection and Segmentation of Kidneys from Magnetic Resonance Images in Patients with Autosomal Dominant Polycystic Kidney Disease. In: Huang D-S, Jo K-H, Huang Z-K, editors., Cham: Springer International Publishing; 2019, p. 639–50.
- Panic J.
- Defeudis A.
- Mazzetti S.
- Rosati S.
- Giannetto G.
- Vassallo L.
- et al.
- Piantadosi G.
- Sansone M.
- Fusco R.
- Sansone C.
- Polsinelli M.
- Cinque L.
- Placidi G.
- Brunese L.
- Mercaldo F.
- Reginelli A.
- Santone A.
- Basaia S.
- Agosta F.
- Wagner L.
- Canu E.
- Magnani G.
- Santangelo R.
- et al.
Lizzi F, Laruina F, Oliva P, Retico A, Fantacci ME. Residual Convolutional Neural Networks to Automatically Extract Significant Breast Density Features. In: Vento M, Percannella G, Colantonio S, Giorgi D, Matuszewski BJ, Kerdegari H, et al., editors., Cham: Springer International Publishing; 2019, p. 28–35.
- Fiorentino M.C.
- Moccia S.
- Capparuccini M.
- Giamberini S.
- Frontoni E.
- Brunese L.
- Mercaldo F.
- Reginelli A.
- Santone A.
- Zaffino P.
- Pernelle G.
- Mastmeyer A.
- Mehrtash A.
- Zhang H.
- Kikinis R.
- et al.
Mendizabal A, Tagliabue E, Brunet J-N, Dall’Alba D, Fiorini P, Cotin S. Physics-Based Deep Neural Network for Real-Time Lesion Tracking in Ultrasound-Guided Breast Biopsy. In: Miller K, Wittek A, Joldes G, Nash MP, Nielsen PMF, editors. Comput. Biomech. Med., Cham: Springer International Publishing; 2020, p. 33–45.