Advertisement

Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data

Published:April 23, 2021DOI:https://doi.org/10.1016/j.ejmp.2021.04.011

      Highlights

      • Multi input data classification methodology for Coronary Artery Disease diagnosis.
      • Integration of InceptionV3 network and Random Forest classifier.
      • Deep Learning matched the human expertise in Coronary Artery Disease diagnosis.

      Abstract

      Purpose

      Accurate detection and treatment of Coronary Artery Disease is mainly based on invasive Coronary Angiography, which could be avoided provided that a robust, non-invasive detection methodology emerged. Despite the progress of computational systems, this remains a challenging issue. The present research investigates Machine Learning and Deep Learning methods in competing with the medical experts' diagnostic yield. Although the highly accurate detection of Coronary Artery Disease, even from the experts, is presently implausible, developing Artificial Intelligence models to compete with the human eye and expertise is the first step towards a state-of-the-art Computer-Aided Diagnostic system.

      Methods

      A set of 566 patient samples is analysed. The dataset contains Polar Maps derived from scintigraphic Myocardial Perfusion Imaging studies, clinical data, and Coronary Angiography results. The latter is considered as reference standard. For the classification of the medical images, the InceptionV3 Convolutional Neural Network is employed, while, for the categorical and continuous features, Neural Networks and Random Forest classifier are proposed.

      Results

      The research suggests that an optimal strategy competing with the medical expert's accuracy involves a hybrid multi-input network composed of InceptionV3 and a Random Forest. This method matches the expert's accuracy, which is 79.15% in the particular dataset.

      Conclusion

      Image classification using deep learning methods can cooperate with clinical data classification methods to enhance the robustness of the predicting model, aiming to compete with the medical expert's ability to identify Coronary Artery Disease subjects, from a large scale patient dataset.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Muntner P.
        • Bittencourt M.S.
        Heart disease and stroke statistics-2019 update: a report from the American Heart Association.
        Circulation. 2019; 139: e56-e528https://doi.org/10.1161/cir.0000000000000659
        • Apostolopoulos D.J.
        • Kaspiri A.
        • Spyridonidis T.
        • Patsouras N.
        • Savvopoulos C.A.
        • Davlouros P.
        • et al.
        Assessment of absolute Tc-99m tetrofosmin retention in the myocardium as an index of myocardial blood flow and coronary flow reserve by gated-SPECT/CT: a feasibility study.
        Ann Nucl Med. 2015; 29: 588-602https://doi.org/10.1007/s12149-015-0982-6
      1. Willerson JT, Wellens HJJ, Cohn JN, Holmes DR, editors. Cardiovascular Medicine. London: Springer London; 2007. https://doi.org/10.1007/978-1-84628-715-2.

        • van Dijk J.
        • Mouden M.
        • Ottervanger J.
        • van Dalen J.
        • Knollema S.
        • Slump C.
        • et al.
        value 99999999of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT.
        J Nucl Cardiol. 2017; 24: 395-401
        • Apostolopoulos D.J.
        • Savvopoulos C.
        What is the benefit of CT-based attenuation correction in myocardial perfusion SPET?.
        Hell J Nucl Med. 2016; 19: 89-92https://doi.org/10.1967/s0024499100360
        • Verweij N.
        • Eppinga R.N.
        • Hagemeijer Y.
        • van der Harst P.
        Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure.
        Sci Rep. 2017; 7: 1-9https://doi.org/10.1038/s41598-017-03062-8
        • Moss A.J.
        • Williams M.C.
        • Newby D.E.
        • Nicol E.D.
        The updated NICE guidelines: cardiac ct as the first-line test for coronary artery disease.
        Curr Cardiovasc Imaging Rep. 2017; 10: 15https://doi.org/10.1007/s12410-017-9412-6
        • Kortesniemi M.
        • Tsapaki V.
        • Trianni A.
        • Russo P.
        • Maas A.
        • Källman H.-E.
        • et al.
        The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession.
        Physica Med. 2018; 56: 90-93https://doi.org/10.1016/j.ejmp.2018.11.005
        • Butler K.T.
        • Davies D.W.
        • Cartwright H.
        • Isayev O.
        • Walsh A.
        Machine learning for molecular and materials science.
        Nature. 2018; 559: 547-555https://doi.org/10.1038/s41586-018-0337-2
        • Giger M.L.
        Machine learning in medical imaging.
        J Am College Radiol. 2018; 15: 512-520https://doi.org/10.1016/j.jacr.2017.12.028
      2. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France: IEEE; 2010, p. 253–6. https://doi.org/10.1109/ISCAS.2010.5537907.

        • Alizadehsani R.
        • Habibi J.
        • Hosseini M.J.
        • Mashayekhi H.
        • Boghrati R.
        • Ghandeharioun A.
        • et al.
        A data mining approach for diagnosis of coronary artery disease.
        Comput Methods Programs Biomed. 2013; 111: 52-61https://doi.org/10.1016/j.cmpb.2013.03.004
        • Detrano R.
        • Janosi A.
        • Steinbrunn W.
        • Pfisterer M.
        • Schmid J.-J.
        • Sandhu S.
        • et al.
        International application of a new probability algorithm for the diagnosis of coronary artery disease.
        Am J Cardiol. 1989; 64: 304-310https://doi.org/10.1016/0002-9149(89)90524-9
        • Babaoğlu I.
        • Fındık O.
        • Bayrak M.
        Effects of principle component analysis on assessment of coronary artery diseases using support vector machine.
        Expert Syst Appl. 2010; 37: 2182-2185https://doi.org/10.1016/j.eswa.2009.07.055
        • Abdar M.
        • Książek W.
        • Acharya U.R.
        • Tan R.-S.
        • Makarenkov V.
        • Pławiak P.
        A new machine learning technique for an accurate diagnosis of coronary artery disease.
        Comput Methods Programs Biomed. 2019; 179104992https://doi.org/10.1016/j.cmpb.2019.104992
        • Arabasadi Z.
        • Alizadehsani R.
        • Roshanzamir M.
        • Moosaei H.
        • Yarifard A.A.
        Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.
        Comput Methods Programs Biomed. 2017; 141: 19-26https://doi.org/10.1016/j.cmpb.2017.01.004
        • Betancur J.
        • Hu L.-H.
        • Commandeur F.
        • Sharir T.
        • Einstein A.J.
        • Fish M.B.
        • et al.
        Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study.
        J Nucl Med. 2019; 60: 664-670https://doi.org/10.2967/jnumed.118.213538
        • Spier N.
        • Nekolla S.
        • Rupprecht C.
        • Mustafa M.
        • Navab N.
        • Baust M.
        Classification of polar maps from cardiac perfusion imaging with graph-convolutional neural networks.
        Sci Rep. 2019; 9: 7569https://doi.org/10.1038/s41598-019-43951-8
        • Sharma M.
        • Acharya U.R.
        A new method to identify coronary artery disease with ECG signals and time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank.
        Pattern Recogn Lett. 2019; 125: 235-240https://doi.org/10.1016/j.patrec.2019.04.014
        • Tan J.H.
        • Hagiwara Y.
        • Pang W.
        • Lim I.
        • Oh S.L.
        • Adam M.
        • et al.
        application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals.
        Comput Biol Med. 2018; 94: 19-26https://doi.org/10.1016/j.compbiomed.2017.12.023
        • Moradi S.
        • Oghli M.G.
        • Alizadehasl A.
        • Shiri I.
        • Oveisi N.
        • Oveisi M.
        • et al.
        MFP-Unet: A novel deep learning based approach for left ventricle segmentation in echocardiography.
        Physica Med. 2019; 67: 58-69https://doi.org/10.1016/j.ejmp.2019.10.001
        • Butun E.
        • Yildirim O.
        • Talo M.
        • Tan R.-S.
        • Rajendra A.U.
        1D-CADCapsNet: One dimensional deep capsule networks for coronary artery disease detection using ECG signals.
        Physica Med. 2020; 70: 39-48https://doi.org/10.1016/j.ejmp.2020.01.007
        • Biagini E.
        • Shaw L.J.
        • Poldermans D.
        • Schinkel A.F.
        • Rizzello V.
        • Elhendy A.
        • et al.
        Accuracy of non-invasive techniques for diagnosis of coronary artery disease and prediction of cardiac events in patients with left bundle branch block: a meta-analysis.
        Eur J Nucl Med Mol Imaging. 2006; 33: 1442-1451https://doi.org/10.1007/s00259-006-0156-9
      3. Takx RA, Blomberg BA, Aidi HE, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circulation: Cardiovascular Imaging 2015;8:e002666. https://doi.org/10.1161/circimaging.114.002666.

        • Apostolopoulos I.D.
        • Papathanasiou N.D.
        • Spyridonidis T.
        • Apostolopoulos D.J.
        Automatic characterisation of myocardial perfusion imaging polar maps employing deep learning and data augmentation.
        Hellenic J Nucl Med. 2020; 23: 125-132
        • Szegedy C.
        • Vanhoucke V.
        • Ioffe S.
        • Shlens J.
        • Wojna Z.
        Rethinking the inception architecture for computer vision.
        in: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2818-2826https://doi.org/10.1109/CVPR.2016.308
        • Knuuti J.
        • Wijns W.
        • Saraste A.
        • Capodanno D.
        • Barbato E.
        • Funck-Brentano C.
        • et al.
        2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC).
        Eur Heart J. 2020; 41: 407-477https://doi.org/10.1093/eurheartj/ehz425
        • Hajjiri M.M.
        • Leavitt M.B.
        • Zheng H.
        • Spooner A.E.
        • Fischman A.J.
        • Gewirtz H.
        Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological Assessment of coronary artery stenosis severity and location.
        JACC: Cardiovasc Imag. 2009; 2: 751-758https://doi.org/10.1016/j.jcmg.2009.04.004
        • Gautier M.
        • Pepin M.
        • Himbert D.
        • Ducrocq G.
        • Iung B.
        • Dilly M.-P.
        • et al.
        Impact of coronary artery disease on indications for transcatheter aortic valve implantation and on procedural outcomes.
        EuroIntervention. 2011; 7: 549-555https://doi.org/10.4244/eijv7i5a90
        • Rodríguez P.
        • Bautista M.A.
        • Gonzalez J.
        • Escalera S.
        Beyond one-hot encoding: Lower dimensional target embedding.
        Image Vis Comput. 2018; 75: 21-31https://doi.org/10.1016/j.imavis.2018.04.004
        • Pan S.J.
        • Yang Q.
        A survey on transfer learning.
        IEEE Trans Knowl Data Eng. 2009; 22: 1345-1359https://doi.org/10.1109/TKDE.2009.191
      4. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (ICML-10), 2010, p. 807–14. http://www.cs.toronto.edu/~hinton/absps/reluICML.pdf.

      5. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Medical image analysis 2017;42:60–88.https://doi.org/10.1016/j.media.2017.07.005.

        • Apostolopoulos I.D.
        • Mpesiana T.A.
        Covid-19: automatic detection from X-ray images utilising transfer learning with convolutional neural networks.
        Phys Eng Sci Med. 2020; 43: 635-640https://doi.org/10.1007/s13246-020-00865-4
        • Coudray N.
        • Ocampo P.S.
        • Sakellaropoulos T.
        • Narula N.
        • Snuderl M.
        • Fenyö D.
        • et al.
        Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.
        Nat Med. 2018; 24: 1559-1567https://doi.org/10.1038/s41591-018-0177-5
        • Avanzo M.
        • Stancanello J.
        • El Naqa I.
        Beyond imaging: the promise of radiomics.
        Physica Med. 2017; 38: 122-139https://doi.org/10.1016/j.ejmp.2017.05.071