Radiation exposure to infants undergoing voiding cystourethrography: The importance of the digital imaging technology


      • Effective dose to infants undergoing VCUG was found to be lower than 50 μSv.
      • Radiation risks due to contemporary VCUG examinations on infants are minor.
      • The transition from analogue-to-digital equipment decreased VCUG exposure.



      To determine the radiation burden to infants undergoing voiding cystourethrography (VCUG) in a single institution and investigate the effect of shifting from analogue to digital imaging that allowed the use of a radiography-free examination protocol.


      Anthropometric and exposure data were prospectively collected for 35 consecutive infants undergoing VCUG on a digital system with a standardized examination protocol not including radiographs. Thermoluminescent dosimeters were used to determine entrance-skin dose. Monte Carlo simulations and patient-specific anthropomorphic phantoms were employed to determine organ/tissue doses and effective dose (ED). The associated theoretical risk of radiation-induced cancer was determined and compared to the nominal risk of cancer induction. The radiation burden from VCUG on a modern digital system with a contemporary examination protocol was compared to corresponding data reported previously for an analogue system in the same institution.


      The median ED from VCUG was found 47 μSv. The associated total life attributable risk of radiation-induced cancer was found 10x10-6 and 13x10-6 for boys and girls, respectively. VCUG was found to increase the nominal risk of cancer by a factor of 1.000025 in boys and 1.000034 in girls. Shifting from analogue to digital imaging system resulted in 89% reduction of the radiation burden from VCUG.


      The theoretical radiation risks for infants undergoing VCUG using a modern digital imaging system and a radiography-free protocol were found to be minor. The transition from analogue to digital equipment resulted in considerable reduction of the radiation burden from VCUG.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hellstrom A.
        • Hanson E.
        • Hansson S.
        • Hjalmas K.
        • Jodal U.
        Association between urinary symptoms at 7 years old and previous urinary tract infection.
        Arch Intern Med. 1991; 66: 232-234
        • CHAND D.H.
        • RHOADES T.
        • POE S.A.
        • KRAUS S.
        • STRIFE C.F..
        Incidence and severity of vesicoureteral reflux in children related to age, gender, race and diagnosis.
        J Urol. 2003; 170: 1548-1550
        • Cleper R.
        • Krause I.
        • Eisenstein B.
        • Davidovits M.
        Prevalence of vesicoureteral reflux in neonatal urinary tract infection.
        Clin Pediatr (Phila). 2004; 43: 619-625
        • Kanellopoulos T.A.
        • Salakos C.
        • Spiliopoulou I.
        • Ellina A.
        • Nikolakopoulou N.M.
        • Papanastasiou D.A.
        First urinary tract infection in neonates, infants and young children: a comparative study.
        Pediatr Nephrol. 2006; 21: 1131-1137
        • Williams G.
        • Fletcher J.T.
        • Alexander S.I.
        • Craig J.C.
        Vesicoureteral reflux.
        J Am Soc Nephrol. 2008; 19: 847-862
        • Arlen A.M.
        • Cooper C.S.
        Controversies in the management of vesicoureteral reflux.
        Curr Urol Rep. 2015; 16: 64
        • Riccabona M.
        Cystography in infants and children: a critical appraisal of the many forms with special regard to voiding cystourethrography.
        Eur Radiol. 2002; 12: 2910-2918
        • Nuutinen M.
        • Uhari M.
        Recurrence and follow-up after urinary tract infection under the age of 1 year.
        Pediatr Nephrol. 2001; 16: 69-72
      1. Frimberger D, Mercado-Deane MG; SECTION ON UROLOGY; SECTION ON RADIOLOGY. Establishing a Standard Protocol for the Voiding Cystourethrography. Pediatrics 2016;138(5): e20162590.

      2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Atomic Radiation. Vol II, New York, NY: United Nations, 2000:13.

      3. Lee RS, Diamond DA, Chow JS. Applying the ALARA concept to the evaluation of vesicoureteric reflux. Pediatr Radiol 2006;36 Suppl 2 (Suppl 2):185-91.

        • Sulieman A.
        • Theodorou K.
        • Vlychou M.
        • Topaltzikis T.
        • Kanavou D.
        • Fezoulidis I.
        • et al.
        Radiation dose measurement and risk estimation for paediatric patients undergoing micturating cystourethrography.
        Br J Radiol. 2007; 80: 731-737
        • Fotakis M.
        • Molyvda Athanasopoulou E.
        • Psarrakos K.
        • Economou I.
        Radiation doses to paediatric patients up to 5 years of age undergoing micturating cystourethrography examinations and its dependence on patient age: a Monte Carlo study.
        Br J Radiol. 2003; 76: 812-817
        • Persliden J.
        • Helmrot E.
        • Hjort P.
        • Resj M.
        Dose and image quality in the comparison of analogue and digital techniques in paediatric urology examinations.
        Eur Radiol. 2004; 14: 638-644
        • Perisinakis K.
        • Raissaki M.
        • Damilakis J.
        • Stratakis J.
        • Neratzoulakis J.
        • Gourtsoyiannis N.
        Fluoroscopy-controlled voiding cystourethrography in infants and children: are the radiation risks trivial?.
        Eur Radiol. 2006; 16: 846-851
      4. Ward VL. Patient dose reduction during voiding cystourethrography. Pediatr Radiol 2006;36 Suppl 2(Suppl 2):168-72.

        • Ward V.L.
        • Strauss K.J.
        • Barnewolt C.E.
        • Zurakowski D.
        • Venkatakrishnan V.
        • Fahey F.H.
        • et al.
        Pediatric radiation exposure and effective dose reduction during voiding cystourethrography.
        Radiology. 2008; 249: 1002-1009
        • Jaju A.
        • Shaw H.L.
        • Don S.
        • Bowling R.H.
        • Hildebolt C.F.
        ALARA: impact of practice quality improvement initiative on dose reduction in pediatric voiding cystourethrogram.
        AJR Am J Roentgenol. 2015; 205: 886-893
        • Bazopoulos E.V.
        • Prassopoulos P.K.
        • Damilakis J.E.
        • Raissaki M.T.
        • Megremis S.D.
        • Gourtsoyiannis N.C.
        A comparison between digital fluoroscopic hard copies and 105-mm spot films in evaluating vesicoureteric reflux in children.
        Pediatr Radiol. 1998; 28: 162-166
        • Riccabona M.
        • Avni F.E.
        • Blickman J.G.
        • Dacher J.N.
        • Darge K.
        • Lobo M.L.
        • et al.
        Imaging recommendations in paediatric uroradiology: minutes of the ESPR workgroup session on urinary tract infection, fetal hydronephrosis, urinary tract ultrasonography and voiding cystourethrography, Barcelona, Spain, June 2007.
        Pediatr Radiol. 2008; 38: 138-145
      5. Radiation and Nuclear Safety Authority (STUK), Finland.;2020 [accessed 10 November 2020].

        • Petoussi-Henss N.
        • Zankl M.
        • Drexler G.
        • Panzer W.
        • Regulla D.
        Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods.
        Phys Med Biol. 1998; 43: 2237-2250
        • National Research Council
        Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2.
        The National Academies Press, Washington, DC2006
      6. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M et al. SEER Cancer Statistics Review, 1975-2017, National Cancer Institute. Bethesda, MD. Available via; 2020 [accessed 10 Nov 2020].

      7. Hart D., Jones D.G., Wall B.F. Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements (NRPB-R--262). United Kingdom 1994.

        • Schultz F.W.
        • Geleijns J.
        • Holscher H.C.
        • Weststrate J.
        • Zonderland H.M.
        • Zoetelief J.
        Radiation burden to paediatric patients due to micturating cystourethrography examinations in a Dutch children's hospital.
        Br J Radiol. 1999; 72: 763-772
        • Yakoumakis E.
        • Dimitriadis A.
        • Makri T.
        • Karlatira M.
        • Karavasilis E.
        • Gialousis G.
        Verification of radiation dose calculations during paediatric cystourethrography examinations using MCNP5 and PCXMC 2.0 Monte Carlo codes.
        Radiat Prot Dosimetry. 2013; 157: 355-362
        • Sulieman A.
        • Babikir E.
        • Alrihaima N.
        • Alkhorayef M.
        • Dalton A.
        • Bradley D.
        • et al.
        Radiation exposure in pediatric patients during micturating cystourethrography procedures.
        Appl Radiat Isot. 2016; 117: 36-41
        • Marshall E.L
        • Rajderkar D.
        • Brown J.L.
        • Stepusin E.J.
        • Borrego D.
        • Bolch W.E.
        A scalable database of organ doses for common diagnostic fluoroscopy examinations of children: procedures of current practice at the University of Florida.
        Phys Med Biol. 2019; 64: 135023
      8. Marshall EL, Rajderkar D, Brown JL, Stepusin EJ, Borrego D, Duncan J et al. A Scalable Database of Organ Doses for Common Diagnostic Fluoroscopy Procedures of Children: Procedures of Historical Practice for Use in Radiation Epidemiology Studies. Radiat Res. 2019;192(6):649-661.

        • Linke S.Y.
        • Tsiflikas I.
        • Herz K.
        • Szavay P.
        • Gatidis S.
        • Schäfer J.F.
        Ultra low-dose VCUG in children using a modern flat detectorunit.
        Eur Radiol. 2016; 26: 1678-1685
        • Pearce R.
        • Agrawalla S.
        • Goodman T.R.
        How to perform the perfect voiding cystourethrogram.
        Pediatr Radiol. 2004; 34: 114-119
        • Papadopoulou F.
        • Efremidis S.C.
        • Oiconomou A.
        • Badouraki M.
        • Panteleli M.
        • Papachristou F.
        • et al.
        Cyclic voiding cystourethrography: is vesicoureteral reflux missed with standard voiding cystourethrography?.
        Eur Radiol. 2002; 12: 666-670
        • Jequier S.
        • Jequier J.C.
        Reliability of voiding cystourethrography to detect reflux.
        AJR Am J Roentgenol. 1989; 153: 807-810
      9. Cho HH, Lee SM, You SK. Effect of using immobilization device in fluoroscopic study in pediatric patient: Focused on radiation dose reduction in voiding cystourethrogram. PLoS One 2019;14(10): e0224063.

        • Harrison J.D.
        • Balonov M.
        • Martin C.J.
        • Ortiz Lopez P.
        • Menzel H-G.
        • Simmonds J.R.
        • et al.
        Use of effective dose.
        Ann ICRP. 2016; 45: 215-224
      10. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37(2-4):1-332.

        Diagnostic Radiology Physics.
        IAEA, Vienna2014
      11. Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013;167(8):700-7.

      12. Tzanis E, Perisinakis K, Ioannou CV, Tsetis D, Damilakis J. A novel personalized dosimetry method for endovascular aneurysm repair (EVAR) procedures. Eur Radiol. 2021; Epub ahead of print.