Advertisement

Fast Monte Carlo codes for occupational dosimetry in interventional radiology

      Highlights

      • Occupational dosimetry for interventional radiology is challenging.
      • Computational dosimetry could be an alternative to standard dosimetry systems.
      • Two fast simulation codes for operator dosimetry were developed.
      • Absorbed dose at a voxel level and the effective dose can be obtained.
      • Validation results showed a satisfactory agreement with Hp(10) measured values.

      Abstract

      Purpose

      Interventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.

      Methods

      Two fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.

      Results

      The new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.

      Conclusion

      The study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • López P.O.
        • Dauer L.T.
        • Loose R.
        • Martin C.J.
        • Miller D.L.
        • Vañó E.
        • et al.
        139. Occupational Radiological Protection in Interventional Procedures.
        Ann ICRP. 2018; 47: 1-118https://doi.org/10.1177/0146645317750356
      1. Vanhavere F, Carinou E, Gualdrini G, Clairand I, Merce MS, Ginjaume M. The ORAMED Project: Optimisation of Radiation Protection for Medical Staff, 2009, p. 470–3. doi:10.1007/978-3-642-03902-7_133.

      2. Kim KP, Miller DL, Balter S, Kleinerman RA, Linet MS, Kwon D, Simon SL. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 94. 2008. 211–227. doi:10.1097/01.hp.0000290614.76386.35.

        • Vano E.
        • Gonzalez L.
        • Fernández J.M.
        • Haskal Z.J.
        Eye lens exposure to radiation in interventional suites: Caution is warranted.
        Radiology. 2008; 248: 945-953https://doi.org/10.1148/radiol.2482071800
        • Vañó E.
        • González L.
        • Guibelalde E.
        • Fernández J.M.
        • Ten J.I.
        Radiation exposure to medical staff in interventional and cardiac radiology.
        British J Radiol. 1998; 71: 954-960https://doi.org/10.1259/bjr.71.849.10195011
        • Meisinger Q.C.
        • Stahl C.M.
        • Andre M.P.
        • Kinney T.B.
        • Newton I.G.
        Radiation protection for the fluoroscopy operator and staff.
        Am J Roentgenol. 2016; 207: 745-754https://doi.org/10.2214/AJR.16.16556
        • Clement C.H.
        • Stewart F.A.
        • Akleyev A.V.
        • Hauer-Jensen M.
        • Hendry J.H.
        • Kleiman N.J.
        • et al.
        ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs –threshold doses for tissue reactions in a radiation protection context.
        Ann ICRP. 2012; 41: 1-322https://doi.org/10.1016/j.icrp.2012.02.001
      3. European Commission 2013. Council Directive (Euratom 2013/59) laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. Off. J. Eur. Commun. 2014.

        • Roguin A.
        • Goldstein J.
        • Bar O.
        • Goldstein J.A.
        Brain and neck tumors among physicians performing interventional procedures.
        Am J Cardiol. 2013; 111: 1368-1372https://doi.org/10.1016/j.amjcard.2012.12.060
        • Martin C.J.
        • Temperton D.H.
        • Jupp T.
        • Hughes A.
        IPEM topical report: Personal dose monitoring requirements in healthcare.
        Phys Med Biol. 2019; 64: 035008https://doi.org/10.1088/1361-6560/aafa3f
        • Sánchez R.M.
        • Vano E.
        • Fernández J.M.
        • Rosales F.
        • Sotil J.
        • Carrera F.
        • et al.
        Staff doses in interventional radiology: A national survey.
        J Vasc Interv Radiol. 2012; 23: 1496-1501https://doi.org/10.1016/j.jvir.2012.05.056
        • Duch M.A.
        • Carrasco P.
        • Ginjaume M.
        • Jornet N.
        • Ortega X.
        • Ribas M.
        Dose evaluation in lung-equivalent media in high-energy photon external radiotherapy.
        Radiat Prot Dosimetry. 2006; 120: 43-47https://doi.org/10.1093/RPD/NCI668
      4. Takata T, Kotoku J, Maejima H, et al. Fast skin dose estimation system for interventional radiology. J Radiat Res. 2018;59(2):233-239. doi:10.1093/jrr/rrx062.

      5. Benmakhlouf H, Sempau J, Andreo P. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study. Med Phys 2014;41:041711. doi:10.1118/1.4868695.

        • Principi S.
        • Farah J.
        • Ferrari P.
        • Carinou E.
        • Clairand I.
        • Ginjaume M.
        The influence of operator position, height and body orientation on eye lens dose in interventional radiology and cardiology: Monte Carlo simulations versus realistic clinical measurements.
        Phys Medica. 2016; 32: 1111-1117https://doi.org/10.1016/j.ejmp.2016.08.010
        • Puxeu-Vaqué J.
        • Duch M.A.
        • Nailon W.H.
        • Cruz Lizuain M.
        • Ginjaume M.
        Field correction factors for a PTW-31016 Pinpoint ionization chamber for both flattened and unflattened beams. Study of the main sources of uncertainties.
        Med Phys. 2017; 44: 1930-1938https://doi.org/10.1002/mp.12189
      6. PODIUM https://www.podium-concerth2020.eu/.

      7. PENELOPE-2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport; NEA/NSC/DOC(2015)3; Workshop Barcelona, Spain 29 June-3 July 2015.

        • Sempau J.
        • Badal A.
        • Brualla L.
        A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields.
        Med Phys. 2011; 38: 5887-5895https://doi.org/10.1118/1.3643029
        • Ye S.J.
        • Brezovich I.A.
        • Pareek P.
        • Naqvi S.A.
        Benchmark of PENELOPE code for low-energy photon transport: Dose comparison with MCNP4 and EGS4.
        Phys Med Biol. 2004; 49: 387-397https://doi.org/10.1088/0031-9155/49/3/003
        • Almansa J.F.
        • Guerrero R.
        • Al-Dweri F.M.O.
        • Anguiano M.
        • Lallena A.M.
        Dose distribution in water for monoenergetic photon point sources in the energy range of interest in brachytherapy: Monte Carlo simulations with PENELOPE and GEANT4.
        Radiat Phys Chem. 2007; 76: 766-773https://doi.org/10.1016/j.radphyschem.2006.12.001
        • Sempau J.
        • Fernández-Varea J.M.
        • Acosta E.
        • Salvat F.
        Experimental benchmarks of the Monte Carlo code PENELOPE.
        Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2003; 207: 107-123https://doi.org/10.1016/S0168-583X(03)00453-1
      8. Cross WG, Böhm J, Charles M, Piesch E, Seltzer SM. ICRU Report 56. Dosimetry of External Beta Rays for Radiation Protection. Journal of the International Commission on Radiation Units and Measurements, Volume os29, Issue 1, 5 January 1997, 10.1093/jicru/os29.1.Report56.

      9. Principi S, Guardiola C, Duch MA, Ginjaume M. Air kerma TO Hp(3) conversion coefficients for IEC 61267 RQR X-ray radiation qualities: Application to dose monitoring of the lens of the eye in medical diagnostics. Radiat Prot Dosimetry 2016;170:45–8. 10.1093/rpd/ncv435.

      10. Sempau J. PENELOPE/penEasy User Manual. https://www.inte.upc.edu/en/downloads/peneasy/usermanual.pdf.

      11. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, et al. XCOM: Photon Cross Sections Database. NIST Standard Reference Database 8 (XGAM). Natl Inst Stand Technol Gaithersburg, NIST, PML, Radiation Physics Division 2010.

      12. International Commision on Radiological Protection (ICRP). Conversion Coefficients for use in Radiological Protection against External Radiation; Ann. ICRP; 26 (3-4); ICRP Publication 74, 1996.

        • Gualdrini G.
        • Bordy J.M.
        • Daures J.
        • Fantuzzi E.
        • Ferrari P.
        • Mariotti F.
        • et al.
        Air kerma to HP(3) conversion coefficients for photons from 10 keV to 10 MeV, calculated in a cylindrical phantom.
        Radiat Prot Dosimetry. 2013; 154: 517-521https://doi.org/10.1093/rpd/ncs269
      13. NEMA PS3/ISO 12052, Digital Imaging and Communications in Medicine (DICOM) Standard, National Electrical Manufacturers Association, Rosslyn, VA, USA (available free at http://www.dicomstandard.org/).

        • Badal A.
        • Badano A.
        Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.
        Med Phys. 2009; 36: 4878-4880https://doi.org/10.1118/1.3231824
      14. Badal A, Zafar F, Dong H, Badano A. A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera. In: Nishikawa RM, Whiting BR, editors. Med. Imaging 2013 Phys. Med. Imaging, vol. 8668, SPIE; 2013, p. 866828. doi:10.1117/12.2008031.

        • Badal A.
        • Sempau J.
        A package of Linux scripts for the parallelization of Monte Carlo simulations.
        Comput Phys Commun. 2006; 175: 440-450https://doi.org/10.1016/j.cpc.2006.05.009
        • Sempau J.
        • Sánchez-Reyes A.
        • Salvat F.
        • Tahar H.O.B.
        • Jiang S.B.
        • Fernández-Varea J.M.
        Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.
        Phys Med Biol. 2001; 46: 1163-1186https://doi.org/10.1088/0031-9155/46/4/318
      15. Evaluation of measurement data — Guide to the expression of uncertainty in measurement JCGM 100:2008.

      16. Thermo Scientific EPD Electronic Personal Dosimeters With coin battery. Fisher Scientific. https://www.fishersci.com/shop/products/thermo-scientific-epd-mk2-electronic-personal-dosimeter-with-coin-battery-cap/19166365.

        • Sanchez R.M.
        • Vano E.
        • Fernandez J.M.
        • Ginjaume M.
        • Duch M.A.
        Measurements of eye lens doses in interventional cardiology using OSL and electronic dosemeters.
        Radiat Prot Dosimetry. 2014; 162: 569-576https://doi.org/10.1093/rpd/nct368
        • Punnoose J.
        • Xu J.
        • Sisniega A.
        • Zbijewski W.
        • Siewerdsen J.H.
        Technical Note: Spektr 3.0 – A computational tool for x-ray spectrum modeling and analysis.
        Med Phys. 2016; 43: 4711-4717https://doi.org/10.1118/1.4955438
      17. Bottle Mannequin Absorber (BOMAB) Phantom and Stand. http://www.ntsincorg.com/bomab_phantom.htm.

        • Fernández Bosman D.
        • García Balcaza V.
        • Delgado C.
        • Principi S.
        • Duch M.A.
        • Ginjaume M.
        Validation of the MC-GPU Monte Carlo code against the PENELOPE/penEasy code system and benchmarking against experimental conditions for typical radiation qualities and setups in interventional radiology and cardiology.
        Phys Med. 2021; 82: 64-71https://doi.org/10.1016/j.ejmp.2021.01.075
        • Saidi P.
        • Sadeghi M.
        • Tenreiro C.
        Variance reduction of Monte Carlo simulation in nuclear engineering field.
        Theory Appl. Monte Carlo Simulations, InTech. 2013; https://doi.org/10.5772/53384
      18. Vanhavere F, Carinou E, Clairand I, Ciraj-Bjelac O, De Monte F, Domienik-Andrzejewska J, et al. The use of active personal dosemeters in interventional workplaces in hospitals: comparison between active and passive dosemeters worn simultaneously by medical staff. Radiat Prot Dosimetry. 2020. 188. 22–9. doi:10.1093/rpd/ncz253.

      19. International Commision on Radiological Protection (ICRP). General Principles for the Radiation Protection of Workers; Ann. ICRP. 27. ICRP Publication 75. 1997.

      20. International Organization for Standardization – ISO 14146:2000 – Radiation protection — Criteria and performance limits for the periodic evaluation of processors of personal dosemeters for X and gamma radiation; 2000.

        • Kikinia R.
        • Pieper S.D.
        • Vosburgh K.
        3D slicer: A plataform for subject-specific image analysis, visualization, and clinical support.
        Intraoperative Imaging Image-Guided Ther. 2014; 3: 277-289