Geant4-DNA simulation of the pre-chemical stage of water radiolysis and its impact on initial radiochemical yields


      This paper demonstrates the impact of the pre-chemical stage, especially the dissociation scheme and the associated probabilities, on water radiolysis simulation using the Geant4-DNA Monte Carlo track structure simulation toolkit. The models and parameters provided by TRACs have been collected and implemented into Geant4-DNA. In order to evaluate their influence on water radiolysis simulation, the radiochemical yields (G-values) are evaluated as a function of time and LET using the “chem6” Geant4-DNA example, and they are compared with published experimental and calculated data. The new pre-chemical models lead to a better agreement with literature data than the default pre-chemical models of Geant4-DNA, especially for OH radicals and H2O2. The revised chemistry constructor “G4EmDNAChemistry_option3” is available in Geant4-DNA version 10.7.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mullenders L.
        • Atkinson M.
        • Paretzke H.
        • Sabatier L.
        • Bouffler S.
        Assessing cancer risks of low-dose radiation.
        Nat Rev Cancer. 2009; 9: 596-604
        • Bernal M.A.
        • Bordage M.C.
        • Brown J.M.C.
        • Davidkova M.
        • Delage E.
        • El Bitar Z.
        • et al.
        Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit.
        Phys Med. 2015; 31: 861-874
        • Incerti S.
        • Ivanchenko A.
        • Karamitros M.
        • Mantero A.
        • Moretto P.
        • Tran H.
        • et al.
        Comparison of GEANT4 very low energy cross section models with experimental data in water.
        Med Phys. 2010; 37: 4692-4708
        • Incerti S.
        • Baldacchino G.
        • Bernal M.
        • Capra R.
        • Champion C.
        • Francis Z.
        • et al.
        The Geant4-DNA project.
        Int J Model Simul Sci Comput. 2010; 1: 157-178
        • Incerti S.
        • Kyriakou I.
        • Bernal M.
        • Bordage M.C.
        • Francis Z.
        • Guatelli S.
        • et al.
        Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project.
        Med Phys. 2018; 45: e722-e739
        • Kreipl M.S.
        • Friedland W.
        • Paretzke H.G.
        Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation.
        Radiat Environ Biophys. 2009; 48: 11-20
        • Cobut V.
        • Frongillo Y.
        • Patau J.P.
        • Goulet T.
        • Fraser M.-J.
        • Jay-Gerin J.P.
        Monte Carlo simulation of fast electron and proton tracks in liquid water-I. Physical and physicochemical aspects.
        Radiat Phys Chem. 1998; 51: 229-243
        • Nikjoo H.
        • Uehara S.
        • Emfietzoglou D.
        • Cucinotta F.A.
        Track-structure codes in radiation research.
        Radiat Meas. 2006; 41: 1052-1074
        • El Naqa I.
        • Pater P.
        • Seuntjens J.
        Monte Carlo role in radiobiological modelling of radiotherapy outcomes.
        Phys Med Biol. 2012; 57: R75-R97
        • Nikjoo H.
        • Emfietzoglou D.
        • Liamsuwan T.
        • Taleei R.
        • Liljequist D.
        • Uehara S.
        Radiation track, DNA damage and response-a review.
        Rep Prog Phys. 2016; 79116601
        • Hirayama R.
        • Ito A.
        • Tomita M.
        • Tsukada T.
        • Yatagai F.
        • Noguchi M.
        • et al.
        Contributions of direct and indirect actions in cell killing by high-LET radiations.
        Radiat Res. 2009; 171: 212-218
        • Karamitros M.
        • Mantero A.
        • Incerti S.
        • Friedland W.
        • Baldacchino G.
        • Barberet P.
        • et al.
        Modeling radiation chemistry in the Geant4 toolkit.
        Prog Nucl Sci Technol. 2011; 2: 503-508
        • Burns W.G.
        • Marsh W.R.
        Radiation chemistry of high-temperature (300–410 deg) water.
        J Chem Soc Faraday Trans. 1981; 1: 197-215
        • Taube H.
        Photochemical reactions of ozone in solution.
        Trans Faraday Soc. 1956; 53: 656-665
        • Thomsen C.L.
        • Madsen D.
        • Keiding S.R.
        • Thøgersen J.
        • Christiansen O.
        Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy.
        J Chem Phys. 1999; 110: 3453-3462
        • Rowe B.R.
        • Vallée F.
        • Queffelec J.L.
        • Gomet J.C.
        • Morlais M.
        The yield of oxygen and hydrogen atoms through dissociative recombination of H2O+ ions with electrons.
        J Chem Phys. 1988; 88: 845-850
        • Ramos-Mendez J.
        • Shin W.G.
        • Dominguez-Kondo J.N.
        • Incerti S.
        • Tran H.N.
        • Villagrasa C.
        • et al.
        Independent reaction times method in Geant4-DNA: implementation and performance.
        Med Phys. 2020; 47: 5919-5930
        • Shin W.G.
        Development and application of the Geant4-DNA toolkit for the simulation of radiobiological effects at the sub-cellular scale.
        Bordeaux and Yonsei University, Bordeaux2021
        • Shin W.G.
        • Bordage M.C.
        • Emfietzoglou D.
        • Kyriakou I.
        • Sakata D.
        • Min C.H.
        • et al.
        Development of a new Geant4-DNA electron elastic scattering model for liquid-phase water using the ELSEPA code.
        J Appl Phys. 2018; 124
        • Shin W.G.
        • Ramos-Mendez J.
        • Faddegon B.
        • Tran H.N.
        • Villagrasa C.
        • Perrot Y.
        • et al.
        Evaluation of the influence of physical and chemical parameters on water radiolysis simulations under MeV electron irradiation using Geant4-DNA.
        J Appl Phys. 2019; 126
        • Elliot A.J.
        Rate constants and G-values for the simulation of the radiolysis of light water over the range 0–300 deg.
        Chalk River Laboratories, Ontario, Canada1994
        • Plante I.
        • Devroye L.
        Considerations for the independent reaction times and step-by-step methods for radiation chemistry simulations.
        Radiat Phys Chem. 2017; 139: 157-172
        • Karamitros M.
        • Luan S.
        • Bernal M.A.
        • Allison J.
        • Baldacchino G.
        • Davidkova M.
        • et al.
        Diffusion-controlled reactions modeling in Geant4-DNA.
        J Comput Phys. 2014; 274: 841-882
        • Ramos-Mendez J.
        • Perl J.
        • Schuemann J.
        • McNamara A.
        • Paganetti H.
        • Faddegon B.
        Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
        Phys Med Biol. 2018; 63105014
        • Buxton G.V.
        Nanosecond pulse radiolysis of aqueous solution containing oproton and hydroxyl radical scavengers.
        Proc R Soc A. 1972; 328: 9-21
        • Wolff R.K.
        • Bronskill M.J.
        • Aldrich J.E.
        • Hunt J.W.
        Picosecond pulse radiolysis. IV. Yield of the solvated electron at 30 picoseconds.
        J Phys Chem. 1973; 77: 1350-1355
        • Draganić Z.D.
        • Draganić I.G.
        Formation of primary reducing yields (Geaq- and GH2) in the radiolysis of aqueous solutions of some positive ions.
        Int J Radiat Phys Chem. 1975; 7: 381-386
        • Burns W.G.
        • May R.
        • Buxton G.V.
        • Wilkinson-Tough G.S.
        Nanosecond proton pulse radiolysis of aqueous solutions.
        J Chem Soc Faraday Trans. 1981; 77: 1543-1551
        • Sumiyoshi T.
        • Katayama M.
        The yield of hydrated electrons at 30 picoseconds.
        Chem Lett. 1982; 11: 1887-1890
        • LaVerne J.A.
        • Pimblott S.M.
        Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water: examination of experiments and models.
        J Phys Chem. 1991; 95: 3196-3206
        • Belloni J.
        • Billiau F.
        • Delaire J.A.
        • Delcourt M.O.
        • Marignier J.L.
        Ionizing radiation-liquid interactions: a comparative study of polar liquids.
        Radiat Phys Chem. 1983; 21: 177-183
        • Elliot A.J.
        • Chenier M.P.
        • Ouellette D.C.
        Temperature dependence of g values for H2O and D2O irradiated with low linear energy transfer radiation.
        J Chem Soc Faraday Trans. 1993; 89: 1193-1197
        • Tomita H.
        • Kai M.
        • Kusama T.
        • Ito A.
        Monte Carlo simulation of physicochemical processes of liquid water radiolysis.
        Radiat Environ Biophys. 1997; 36: 105-116
        • Pimblott S.M.
        • LaVerne J.A.
        Stochastic simulation of the electron radiolysis of water and aqueous solutions.
        J Phys Chem A. 1997; 101: 5828-5838
        • Bartels D.M.
        • Cook A.R.
        • Mudaliar M.
        • Jonah C.D.
        Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy.
        J Phys Chem A. 2000; 104: 1686-1691
        • Jay-Gerin J.-P.
        • Ferradini C.
        A new estimate of the OH radical yield at early times in the radiolysis of liquid water.
        Chem Phys Lett. 2000; 317: 388-391
        • LaVerne J.A.
        OH radicals and oxidizing products in the gamma radiolysis of water.
        Radiat Res. 2000; 153: 196-200
        • Muroya Y.
        • Lin M.
        • Wu G.
        • Iijima H.
        • Yoshii K.
        • Ueda T.
        • et al.
        A re-evaluation of the initial yield of the hydrated electron in the picosecond time range.
        Radiat Phys Chem. 2005; 72: 169-172
        • Wang F.
        • Schmidhammer U.
        • Larbre J.P.
        • Zong Z.
        • Marignier J.L.
        • Mostafavi M.
        Time-dependent yield of the hydrated electron and the hydroxyl radical in D2O: a picosecond pulse radiolysis study.
        Phys Chem Chem Phys. 2018;
        • Schwarz H.A.
        • Caffrey Jr, J.M.
        • Scholes G.
        Radiolysis of neutral water by cyclotron produced deuterons and helium ions.
        J Am Chem Soc. 1959; 81: 1801-1809
        • Naleway C.A.
        • Sauer Jr, M.C.
        • Jonah C.D.
        • Schmidt K.H.
        Theoretical analysis of the LET dependence of transient yields observed in pulse radiolysis with ion beams.
        Radiat Res. 1979; 77: 47-61
        • Burns W.G.
        • Sims H.E.
        Effect of radiation type in water radiolysis.
        J Chem Soc Faraday Trans. 1981; 77: 2803-2813
        • Wasselin-Trupin V.
        • Baldacchino G.
        • Bouffard S.
        • Hickel B.
        Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET.
        Radiat Phys Chem. 2002; 65: 53-61
        • Anderson A.R.
        • Hart E.J.
        Molecular product and free radical yields in the decomposition of water by protons, deuterons, and helium ions.
        Radiat Res. 1961; 14: 689-704
        • Pastina B.
        • LaVerne J.A.
        Hydrogen peroxide production in the radiolysis of water with heavy ions.
        J Phys Chem A. 1999; 103: 1592-1597
        • Schwarz H.A.
        Applications of the spur diffusion model to the radiation chemistry of aqueous solutions.
        J Phys Chem. 1969; 73: 1928-1937
        • Sakata D.
        • Belov O.
        • Bordage M.C.
        • Emfietzoglou D.
        • Guatelli S.
        • Inaniwa T.
        • et al.
        Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA.
        Sci Rep. 2020; 10: 20788
        • Montenegro E.C.
        • Scully S.W.J.
        • Wyer J.A.
        • Senthil V.
        • Shah M.B.
        Evaporation, fission and auto-dissociation of doubly charged water.
        J Electron Spectrosc. 2007; 155: 81-85
        • Meesungnoen J.
        • Jay-Gerin J.P.
        High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization.
        J Phys Chem A. 2005; 109: 6406-6419