Highlights
- •w-Values are a source of uncertainty in reference dosimetry for hadrontherapy.
- •MDM-Ion is a Monte Carlo code developed for swift ions transport in liquid water.
- •w-Values shown to be independent of both particle charge and energy.
- •Electronic excitation and Auger electron emission strongly affect the results.
- •w-Values in liquid water should be used as a benchmark for microdosimetry.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Track-structure codes in radiation research.Radiat Meas. 2006; 41: 1052-1074https://doi.org/10.1016/j.radmeas.2006.02.001
- Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure.Radiat Env Biophys. 2010; 49: 5-13https://doi.org/10.1007/s00411-009-0255-7
- Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water.Radiat Res. 2008; 169: 584-594https://doi.org/10.1667/RR1099.1
- Monte Carlo role in radiobiological modelling of radiotherapy outcomes.Phys Med Biol. 2012; 57: R75-R97https://doi.org/10.1088/0031-9155/57/11/R75
- Determination of the effective local lethal function for the NanOx Model.Radiat Res. 2020; 193https://doi.org/10.1667/RR15463.1
- Study of the influence of NanOx parameters.Cancers (Basel). 2018; 10https://doi.org/10.3390/cancers10040087
- NanOx, a new model to predict cell survival in the context of particle therapy.Phys Med Biol. 2017; 62: 1248-1268https://doi.org/10.1088/1361-6560/aa54c9
- Production of HO2 and O2 by multiple ionization in water radiolysis by swift carbon ions.Chem Phys Lett. 2005; 410: 330-334https://doi.org/10.1016/j.cplett.2005.05.057
- Radiolysis of water confined in porous silica: a simulation study of the physicochemical yields.J Chem Phys. 2010; 114: 12667-12674https://doi.org/10.1021/jp103127j
- Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part I: global primary chemical boost.Radiat Phys Chem. 2020; 108790https://doi.org/10.1016/j.radphyschem.2020.108790
- Theoretical derivation and benchmarking of cross sections for low-energy electron transport in gold.Eur Phys J Plus. 2020; 123: 1-37https://doi.org/10.1140/epjp/s13360-020-00354-3
- Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation.Med Phys. 2021; 48: 1874-1883https://doi.org/10.1002/mp.14576
- Theoretical study of W-values for particle impact on water.Nucl Inst Methods Phys Res B. 2019; : 1-7https://doi.org/10.1016/j.nimb.2018.11.031
- Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE radiation tracks.New J Phys. 2009; 11https://doi.org/10.1088/1367-2630/11/6/063047
- Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project.Med Phys. 2018; 45: e722-e739https://doi.org/10.1002/mp.13048
- Radiation track, DNA damage and response - a review.Reports Prog Phys. 2016; 79116601https://doi.org/10.1088/0034-4885/79/11/116601
- A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water.Phys Med Biol. 2011; 56: 6475-6493https://doi.org/10.1088/0031-9155/56/19/019
Andreo P, Burns DT, Hohlfeld K, Hu MS, Kanai T, Laitano F, et al. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. IAEA TRS-398. Vienna; 2000.
ICRU REPORT 78 - International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Proton-Beam Therapy. vol. 7. 2007.
ICRU REPORT 59 - International Commission on Radiation Units and Measurements. Clinical Proton Dosimetry Part I : Beam Production , Beam Delivery and Measurement of Absorbed Dose. 1998.
Inokuti M, KrajcarBronić I, Srdoč D. Ch 8:Yields of ionization and excitation in irradiated matter. At. Mol. data Radiother. Radiat. Res. IAEA-TecDoc-799, 1995, p. 547–631.
- Measurement of w values of low-energy electrons in several gases.Radiat Res. 1980; 84: 189-218https://doi.org/10.2307/3575293
- Electron attachment in gases and liquids.Chem Phys Lett. 1971; 12: 173-179https://doi.org/10.1016/0009-2614(71)80643-7
ICRU REPORT 31 - International Commission on Radiation Units and Measurements. Average Energy Required To Produce An Ion Pair. 1979.
- Energy dependence of W values of protons in water.Radiat Prot Dosimetry. 2002; 99: 347-350
Mozumder A. Chapter 4: Ionization and Excitation Phenomena. Fundam. Radiat. Chem., 1999.
- Yield and decay of the hydrated electron from 100 ps to 3 ns.J Chem Phys. 1976; 80: 1267-1270
- Yield of solvated electrons at 30 picoseconds in water and alcohols.Bull Chem Soc Jpn. 1985; 58: 3073-3075
- A Monte Carlo track structure code for electrons (~10 eV-10 keV) and protons (~0.3-10 MeV) in water: partitioning of energy and collision events.Phys Med Biol. 2000; 45: 3171-3194https://doi.org/10.1088/0031-9155/45/11/305
- Considerations on the miniaturization of detectors for in vivo dosimetry in radiotherapy: a Monte Carlo study.Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2017; 399: 20-27https://doi.org/10.1016/j.nimb.2017.03.078
- Energy per ion pair for electron and proton beams in atomic hydrogen.Proc R Soc London Ser A Math Phys Sci. 1958; 248: 415-428https://doi.org/10.1098/rspa.1958.0253
- Binary-encounter-dipole model for electron-impact ionization.Phys Rev A. 1994; 50: 3954-3967https://doi.org/10.1103/PhysRevA.50.3954
- Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis.Radiat Phys Chem. 2006; 75: 493-513https://doi.org/10.1016/j.radphyschem.2005.09.015
- Extension of the binary-encounter-dipole model to relativistic incident electrons.Phys Rev A - At Mol Opt Phys. 2000; 62: 052710-52711https://doi.org/10.1103/PhysRevA.62.052710
- Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks.New J Phys. 2008; 10https://doi.org/10.1088/1367-2630/10/12/125020
- Monte Carlo Simulation of fast electron and.Radiat Phys Chem. 1998; 51: 229-243
- Electron production in proton collisions with atoms and molecules: energy distributions.Rev Mod Phys. 1992; 64: 441-490https://doi.org/10.1103/RevModPhys.64.441
- Theoretical calculation of single ionization in collisions between protons and low-[Formula Presented] molecules at intermediate and high energies.Phys Rev A - At Mol Opt Phys. 2000; 62: 6https://doi.org/10.1103/PhysRevA.62.022701
- Multiple electron emission from noble gases colliding with proton beams, including postcollisional effects.Phys Rev A - At Mol Opt Phys. 2007; 75: 1-7https://doi.org/10.1103/PhysRevA.75.052708
- Computation of distorted wave cross sections for high-energy inelastic collisions of heavy ions with water molecules.Adv Quantum Chem Theory Heavy Ions Collis Phys Hadron Ther. 2013; : 231-263
Perkins T, Cullen DE, Chen MH, Hubbell JH, Rathkopf J, Scofied J. Tables and Graphs of Atomic Subsh , ell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1 - 100. vol. 30. 1991.
- Collective oscillation in liquid water.J Chem Phys. 1974; 60: 3474-3482https://doi.org/10.1063/1.1681563
- A model for energy deposition in liquid water.Radiat Res. 1976; 67: 408-425https://doi.org/10.2307/3574338
- Analytic models of electron impact excitation cross sections.J Atmos Terr Phys. 1972; 34: 1703-1717
- Nuclear Instruments and Methods in Physics Research B Stopping cross sections of liquid water for MeV energy protons.Nucl Inst Methods Phys Res B. 2009; 267: 2667-2670https://doi.org/10.1016/j.nimb.2009.05.036
- Energy loss measurement of protons in liquid water.Phys Med Biol. 2011; 56: 2367https://doi.org/10.1088/0031-9155/56/8/003
NIST. National Institute of Standards and Technology n.d. http://www.nist.gov/pml/data/ionization/.
ICRU REPORT 49 - International Commission on Radiation Units and Measurements. Stopping Powers and Ranges for Protons and Alpha Particles. 2015.
- ICRU REPORT 73 - International Commission on Radiation Units and Measurements. Stopping of Ions Heavier Than Helium. 2005; 5https://doi.org/10.1093/jicru/ndi001
- W values of protons in liquid water.Radiat Prot Dosimetry. 2007; 126: 93-96https://doi.org/10.1093/rpd/ncm019
- Inelastic-collision cross sections of liquid water for interactions of energetic protons.Radiat Phys Chem. 2000; 59: 255-275https://doi.org/10.1016/S0969-806X(00)00263-2
ICRU REPORT 55 - International Commission on Radiation Units and Measurements. Secondary Electron Spectra from Charged Particle Interactions. 1996.
- Technical note: improvements in geant 4 energy-loss model and the effect on low-energy electron transport in liquid water.Med Phys. 2015; 42: 3870-3876https://doi.org/10.1118/1.4921613
Stolterfoht N, DuBois RD, Rivarola RD. Electron emission in heavy ion-atom collisions, Springer Series on Atoms and Plasmas. 1997.
- On the theory of ionization yield of radiations in different substances.Phys Rev. 1946; 70: 44-52https://doi.org/10.1103/PhysRev.70.44
Christophorou LG, Anderson VE, Birks JB. Atomic and molecular radiation physics. London: n.d.
- Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms.Phys Rev A. 2001; 64: 1-10https://doi.org/10.1103/PhysRevA.64.032713
- Electron inelastic-scattering cross sections in liquid water.Radiat Phys Chem. 1998; 53: 1-18https://doi.org/10.1016/S0969-806X(97)00317-4