Advertisement

Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values

  • Verónica Belén Tessaro
    Correspondence
    Corresponding author.
    Affiliations
    Grupo de Física Biomédica, Instituto de Física de Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario (UNR), C.P.2000 Rosario, Argentina

    Université de Lyon, F-69622, Université de Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Villeurbanne, France
    Search for articles by this author
  • Benoit Gervais
    Affiliations
    Centre de Recherche sur les Ions, les Matériaux et la Photonique (UMR6252), CEA/CNRS/ENSICAEN/Université de Caen-Basse Normandie UCBN, CIMAP-CIRIL-Ganil, BP 5133, 14070, Cedex 05, Caen, France
    Search for articles by this author
  • Author Footnotes
    1 Current address: National Institute of Aerospace, Hampton, VA, USA.
    Floriane Poignant
    Footnotes
    1 Current address: National Institute of Aerospace, Hampton, VA, USA.
    Affiliations
    Université de Lyon, F-69622, Université de Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Villeurbanne, France
    Search for articles by this author
  • Michael Beuve
    Affiliations
    Université de Lyon, F-69622, Université de Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Villeurbanne, France
    Search for articles by this author
  • Mariel Elisa Galassi
    Affiliations
    Grupo de Física Biomédica, Instituto de Física de Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario (UNR), C.P.2000 Rosario, Argentina
    Search for articles by this author
  • Author Footnotes
    1 Current address: National Institute of Aerospace, Hampton, VA, USA.

      Highlights

      • w-Values are a source of uncertainty in reference dosimetry for hadrontherapy.
      • MDM-Ion is a Monte Carlo code developed for swift ions transport in liquid water.
      • w-Values shown to be independent of both particle charge and energy.
      • Electronic excitation and Auger electron emission strongly affect the results.
      • w-Values in liquid water should be used as a benchmark for microdosimetry.

      Abstract

      Purpose

      To develop a particle transport code to compute w-values and stopping power of swift ions in liquid water and gases of interest for reference dosimetry in hadrontherapy. To analyze the relevance of inelastic and post-collisional processes considered.

      Methods

      The Monte Carlo code MDM was extended to the case of swift ion impact on liquid water (MDM-Ion). Relativistic corrections in the inelastic cross sections and the post-collisional Auger emission were considered. The effects of introducing different electronic excitation cross sections were also studied.

      Results

      The stopping power of swift ions on liquid water, calculated with MDM-Ion, are in excellent agreement with recommended data. The w-values show a strong dependence on the electronic excitation cross sections and on the Auger electron emission. Comparisons with other Monte Carlo codes show the relevance of both the processes considered and of the cross sections employed. W and w-values for swift electron, proton, and carbon ions calculated with the MDM and MDM-Ion codes are in very close agreement with each other and with the 20.8 eV experimental value.

      Conclusion

      We found that w-values in liquid water are independent of ion charge and energy, as assumed in reference dosimetry for hadrontherapy from sparse experimental results for electron and ion impact on gases. Excitation cross sections and Auger emission included in Monte Carlo codes are critical in w-values calculations. The computation of this physical parameter should be used as a benchmark for micro-dosimetry investigations, to assess the reliability of the cross sections employed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nikjoo H.
        • Uehara S.
        • Emfietzoglou D.
        • Cucinotta F.A.
        Track-structure codes in radiation research.
        Radiat Meas. 2006; 41: 1052-1074https://doi.org/10.1016/j.radmeas.2006.02.001
        • Plante I.
        • Cucinotta F.A.
        Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure.
        Radiat Env Biophys. 2010; 49: 5-13https://doi.org/10.1007/s00411-009-0255-7
        • Dingfelder M.
        • Ritchie R.H.
        • Turner J.E.
        • Friedland W.
        • Paretzke H.G.
        • Hamm R.N.
        Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water.
        Radiat Res. 2008; 169: 584-594https://doi.org/10.1667/RR1099.1
        • El Naqa I.
        • Pater P.
        • Seuntjens J.
        Monte Carlo role in radiobiological modelling of radiotherapy outcomes.
        Phys Med Biol. 2012; 57: R75-R97https://doi.org/10.1088/0031-9155/57/11/R75
        • Monini C.
        • Cunha M.
        • Chollier L.
        • Testa E.
        • Beuve M.
        Determination of the effective local lethal function for the NanOx Model.
        Radiat Res. 2020; 193https://doi.org/10.1667/RR15463.1
        • Monini C.
        • Cunha M.
        • Testa E.
        Study of the influence of NanOx parameters.
        Cancers (Basel). 2018; 10https://doi.org/10.3390/cancers10040087
        • Cunha M.
        • Monini C.
        • Testa É.
        • Beuve M.
        NanOx, a new model to predict cell survival in the context of particle therapy.
        Phys Med Biol. 2017; 62: 1248-1268https://doi.org/10.1088/1361-6560/aa54c9
        • Gervais B.
        • Beuve M.
        • Olivera G.H.
        • Galassi M.E.
        • Rivarola R.D.
        Production of HO2 and O2 by multiple ionization in water radiolysis by swift carbon ions.
        Chem Phys Lett. 2005; 410: 330-334https://doi.org/10.1016/j.cplett.2005.05.057
        • Ouerdane H.
        • Gervais B.
        • Zhou H.
        • Beuve M.
        • Renault J.-P.
        Radiolysis of water confined in porous silica: a simulation study of the physicochemical yields.
        J Chem Phys. 2010; 114: 12667-12674https://doi.org/10.1021/jp103127j
        • Poignant F.
        • Charfi H.
        • Chan C.-H.
        • Dumont E.
        • Loffreda D.
        • Testa É.
        • et al.
        Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part I: global primary chemical boost.
        Radiat Phys Chem. 2020; 108790https://doi.org/10.1016/j.radphyschem.2020.108790
        • Poignant F.
        • Ipatov A.
        • Chakchir O.
        • Lartaud P.
        • Testa É.
        • Gervais B.
        Theoretical derivation and benchmarking of cross sections for low-energy electron transport in gold.
        Eur Phys J Plus. 2020; 123: 1-37https://doi.org/10.1140/epjp/s13360-020-00354-3
        • Poignant F.
        • Monini C.
        • Testa É.
        • Beuve M.
        Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation.
        Med Phys. 2021; 48: 1874-1883https://doi.org/10.1002/mp.14576
        • Tessaro V.B.
        • Poignant F.
        • Gervais B.
        • Beuve M.
        • Galassi M.E.
        Theoretical study of W-values for particle impact on water.
        Nucl Inst Methods Phys Res B. 2019; : 1-7https://doi.org/10.1016/j.nimb.2018.11.031
        • Plante I.
        • Cucinotta F.A.
        Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE radiation tracks.
        New J Phys. 2009; 11https://doi.org/10.1088/1367-2630/11/6/063047
        • Incerti S.
        • Kyriakou I.
        • Bernal M.A.
        • Bordage M.C.
        • Francis Z.
        • Guatelli S.
        • et al.
        Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project.
        Med Phys. 2018; 45: e722-e739https://doi.org/10.1002/mp.13048
        • Nikjoo H.
        • Emfietzoglou D.
        • Liamsuwan T.
        • Taleei R.
        • Liljequist D.
        • Uehara S.
        Radiation track, DNA damage and response - a review.
        Reports Prog Phys. 2016; 79116601https://doi.org/10.1088/0034-4885/79/11/116601
        • Garcia-Molina R.
        • Abril I.
        • Heredia-Avalos S.
        • Kyriakou I.
        • Emfietzoglou D.
        A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water.
        Phys Med Biol. 2011; 56: 6475-6493https://doi.org/10.1088/0031-9155/56/19/019
      1. Andreo P, Burns DT, Hohlfeld K, Hu MS, Kanai T, Laitano F, et al. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. IAEA TRS-398. Vienna; 2000.

      2. ICRU REPORT 78 - International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Proton-Beam Therapy. vol. 7. 2007.

      3. ICRU REPORT 59 - International Commission on Radiation Units and Measurements. Clinical Proton Dosimetry Part I : Beam Production , Beam Delivery and Measurement of Absorbed Dose. 1998.

      4. Inokuti M, KrajcarBronić I, Srdoč D. Ch 8:Yields of ionization and excitation in irradiated matter. At. Mol. data Radiother. Radiat. Res. IAEA-TecDoc-799, 1995, p. 547–631.

        • Combecher D.
        Measurement of w values of low-energy electrons in several gases.
        Radiat Res. 1980; 84: 189-218https://doi.org/10.2307/3575293
        • Christophorou L.G.
        • Blaunstein R.P.
        Electron attachment in gases and liquids.
        Chem Phys Lett. 1971; 12: 173-179https://doi.org/10.1016/0009-2614(71)80643-7
      5. ICRU REPORT 31 - International Commission on Radiation Units and Measurements. Average Energy Required To Produce An Ion Pair. 1979.

        • Willems G.
        • Baek W.Y.
        • Grosswendt B.
        Energy dependence of W values of protons in water.
        Radiat Prot Dosimetry. 2002; 99: 347-350
      6. Mozumder A. Chapter 4: Ionization and Excitation Phenomena. Fundam. Radiat. Chem., 1999.

        • Jonah C.D.
        • Matheson M.S.
        • Mille J.R.
        • Hart E.J.
        Yield and decay of the hydrated electron from 100 ps to 3 ns.
        J Chem Phys. 1976; 80: 1267-1270
        • Sumiyoshi T.
        • Tsugarau K.
        • Yamada T.
        • Katayama M.
        Yield of solvated electrons at 30 picoseconds in water and alcohols.
        Bull Chem Soc Jpn. 1985; 58: 3073-3075
        • Emfietzoglou D.
        • Papamichael G.
        • Kostarelos K.
        • Moscovitch M.
        A Monte Carlo track structure code for electrons (~10 eV-10 keV) and protons (~0.3-10 MeV) in water: partitioning of energy and collision events.
        Phys Med Biol. 2000; 45: 3171-3194https://doi.org/10.1088/0031-9155/45/11/305
        • Cunha M.
        • Testa E.
        • Beuve M.
        • Balosso J.
        • Chaikh A.
        Considerations on the miniaturization of detectors for in vivo dosimetry in radiotherapy: a Monte Carlo study.
        Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2017; 399: 20-27https://doi.org/10.1016/j.nimb.2017.03.078
        • Dalgarno A.
        • Griffing G.W.
        Energy per ion pair for electron and proton beams in atomic hydrogen.
        Proc R Soc London Ser A Math Phys Sci. 1958; 248: 415-428https://doi.org/10.1098/rspa.1958.0253
        • Kim Y.K.
        • Rudd M.E.
        Binary-encounter-dipole model for electron-impact ionization.
        Phys Rev A. 1994; 50: 3954-3967https://doi.org/10.1103/PhysRevA.50.3954
        • Gervais B.
        • Beuve M.
        • Olivera G.H.
        • Galassi M.E.
        Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis.
        Radiat Phys Chem. 2006; 75: 493-513https://doi.org/10.1016/j.radphyschem.2005.09.015
        • Kim Y.K.
        • Santos J.P.
        • Parente F.
        Extension of the binary-encounter-dipole model to relativistic incident electrons.
        Phys Rev A - At Mol Opt Phys. 2000; 62: 052710-52711https://doi.org/10.1103/PhysRevA.62.052710
        • Plante I.
        • Cucinotta F.A.
        Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks.
        New J Phys. 2008; 10https://doi.org/10.1088/1367-2630/10/12/125020
        • Cobut V.
        • Frongillo Y.
        • Patau J.P.
        • Goulet T.
        • Fraser M.J.
        • Jay-Gerin J.P.
        Monte Carlo Simulation of fast electron and.
        Radiat Phys Chem. 1998; 51: 229-243
        • Rudd M.E.
        • Kim Y.K.
        • Madison D.H.
        • Gay T.J.
        Electron production in proton collisions with atoms and molecules: energy distributions.
        Rev Mod Phys. 1992; 64: 441-490https://doi.org/10.1103/RevModPhys.64.441
        • Galassi M.E.
        • Rivarola R.D.
        • Beuve M.
        • Olivera G.H.
        • Fainstein P.D.
        Theoretical calculation of single ionization in collisions between protons and low-[Formula Presented] molecules at intermediate and high energies.
        Phys Rev A - At Mol Opt Phys. 2000; 62: 6https://doi.org/10.1103/PhysRevA.62.022701
        • Galassi M.E.
        • Rivarola R.D.
        • Fainstein P.D.
        Multiple electron emission from noble gases colliding with proton beams, including postcollisional effects.
        Phys Rev A - At Mol Opt Phys. 2007; 75: 1-7https://doi.org/10.1103/PhysRevA.75.052708
        • Rivarola R.D.
        • Galassi M.E.
        • Fainstein P.D.
        • Championc C.
        Computation of distorted wave cross sections for high-energy inelastic collisions of heavy ions with water molecules.
        Adv Quantum Chem Theory Heavy Ions Collis Phys Hadron Ther. 2013; : 231-263
      7. Perkins T, Cullen DE, Chen MH, Hubbell JH, Rathkopf J, Scofied J. Tables and Graphs of Atomic Subsh , ell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1 - 100. vol. 30. 1991.

        • Heller J.M.
        • Hamm R.N.
        • Birkhoff R.D.
        • Painter L.R.
        Collective oscillation in liquid water.
        J Chem Phys. 1974; 60: 3474-3482https://doi.org/10.1063/1.1681563
        • Kutcher G.J.
        • Green A.E.S.
        A model for energy deposition in liquid water.
        Radiat Res. 1976; 67: 408-425https://doi.org/10.2307/3574338
        • Green A.E.S.
        • Stolarski R.S.
        Analytic models of electron impact excitation cross sections.
        J Atmos Terr Phys. 1972; 34: 1703-1717
        • Shimizu M.
        • Kaneda M.
        • Hayakawa T.
        • Tsuchida H.
        • Itoh A.
        Nuclear Instruments and Methods in Physics Research B Stopping cross sections of liquid water for MeV energy protons.
        Nucl Inst Methods Phys Res B. 2009; 267: 2667-2670https://doi.org/10.1016/j.nimb.2009.05.036
        • Siiskonen T.
        • Kettunen H.
        • Perajarvi K.
        • Javanainen A.
        • Rossi M.
        • Trzaska W.H.
        • et al.
        Energy loss measurement of protons in liquid water.
        Phys Med Biol. 2011; 56: 2367https://doi.org/10.1088/0031-9155/56/8/003
      8. NIST. National Institute of Standards and Technology n.d. http://www.nist.gov/pml/data/ionization/.

      9. ICRU REPORT 49 - International Commission on Radiation Units and Measurements. Stopping Powers and Ranges for Protons and Alpha Particles. 2015.

      10. ICRU REPORT 73 - International Commission on Radiation Units and Measurements. Stopping of Ions Heavier Than Helium. 2005; 5https://doi.org/10.1093/jicru/ndi001
        • Baek W.Y.
        • Grosswendt B.
        W values of protons in liquid water.
        Radiat Prot Dosimetry. 2007; 126: 93-96https://doi.org/10.1093/rpd/ncm019
        • Dingfelder M.
        • Inokuti M.
        • Paretzke H.G.
        Inelastic-collision cross sections of liquid water for interactions of energetic protons.
        Radiat Phys Chem. 2000; 59: 255-275https://doi.org/10.1016/S0969-806X(00)00263-2
      11. ICRU REPORT 55 - International Commission on Radiation Units and Measurements. Secondary Electron Spectra from Charged Particle Interactions. 1996.

        • Kyriakou I.
        • Incerti S.
        • Francis Z.
        Technical note: improvements in geant 4 energy-loss model and the effect on low-energy electron transport in liquid water.
        Med Phys. 2015; 42: 3870-3876https://doi.org/10.1118/1.4921613
      12. Stolterfoht N, DuBois RD, Rivarola RD. Electron emission in heavy ion-atom collisions, Springer Series on Atoms and Plasmas. 1997.

        • Fano U.
        On the theory of ionization yield of radiations in different substances.
        Phys Rev. 1946; 70: 44-52https://doi.org/10.1103/PhysRev.70.44
      13. Christophorou LG, Anderson VE, Birks JB. Atomic and molecular radiation physics. London: n.d.

        • Kim Y.
        Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms.
        Phys Rev A. 2001; 64: 1-10https://doi.org/10.1103/PhysRevA.64.032713
        • Dingfelder M.
        • Hantke D.
        • Inokuti M.
        • Paretzke H.G.
        Electron inelastic-scattering cross sections in liquid water.
        Radiat Phys Chem. 1998; 53: 1-18https://doi.org/10.1016/S0969-806X(97)00317-4