Advertisement

Measuring breathing induced oesophageal motion and its dosimetric impact

  • Tobias Fechter
    Correspondence
    Corresponding author at: Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
    Affiliations
    Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany

    German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
    Search for articles by this author
  • Sonja Adebahr
    Affiliations
    German Cancer Consortium (DKTK). Partner Site Freiburg, Germany

    Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
    Search for articles by this author
  • Anca-Ligia Grosu
    Affiliations
    German Cancer Consortium (DKTK). Partner Site Freiburg, Germany

    Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
    Search for articles by this author
  • Dimos Baltas
    Affiliations
    Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Germany

    German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
    Search for articles by this author

      Highlights

      • By delineating the oesophagus on 3DCT large parts of the organ are missed.
      • Oesophageal motion is heterogeneous across patients.
      • Motion has a significant impact on the delivered dose.
      • High motion amplitudes are not restricted to a specific part of the organ.
      • Detailed motion model for the whole oesophagus.

      Abstract

      Purpose: Stereotactic body radiation therapy allows for a precise dose delivery. Organ motion bears the risk of undetected high dose healthy tissue exposure. An organ very susceptible to high dose is the oesophagus. Its low contrast on CT and the oblong shape render motion estimation difficult. We tackle this issue by modern algorithms to measure oesophageal motion voxel-wise and estimate motion related dosimetric impacts.
      Methods: Oesophageal motion was measured using deformable image registration and 4DCT of 11 internal and 5 public datasets. Current clinical practice of contouring the organ on 3DCT was compared to timely resolved 4DCT contours. Dosimetric impacts of the motion were estimated by analysing the trajectory of each voxel in the 4D dose distribution. Finally an organ motion model for patient-wise comparisons was built.
      Results: Motion analysis showed mean absolute maximal motion amplitudes of 4.55  ±  1.81 mm left-right, 5.29  ±  2.67 mm anterior-posterior and 10.78  ±  5.30 mm superior-inferior. Motion between cohorts differed significantly. In around 50% of the cases the dosimetric passing criteria was violated. Contours created on 3DCT did not cover 14% of the organ for 50% of the respiratory cycle and were around 38% smaller than the union of all 4D contours. The motion model revealed that the maximal motion is not limited to the lower part of the organ. Our results showed motion amplitudes higher than most reported values in the literature and that motion is very heterogeneous across patients.
      Conclusions: Individual motion information should be considered in contouring and planning.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Timmerman R.
        • McGarry R.
        • Yiannoutsos C.
        • Papiez L.
        • Tudor K.
        • DeLuca J.
        • et al.
        Excessive toxicity when treating central tumors in a phase ii study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.
        J Clin Oncol. 2006; 24 (pMID: 17050868): 4833-4839https://doi.org/10.1200/JCO.2006.07.5937
        • Adebahr S.
        • Collette S.
        • Shash E.
        • Lambrecht M.
        • Le Pechoux C.
        • Faivre-Finn C.
        • et al.
        LungTech, an EORTC Phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective.
        Br J Radiol. 2015; 88: 20150036
        • Kong F.M.
        • Ritter T.
        • Quint D.J.
        • Senan S.
        • Gaspar L.E.
        • Komaki R.U.
        • et al.
        Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1442-1457
        • Gao H.
        • Kelsey C.R.
        • Boyle J.
        • Xie T.
        • Catalano S.
        • Wang X.
        • et al.
        Impact of esophageal motion on dosimetry and toxicity with thoracic radiation therapy.
        Technol Cancer Res Treat. 2019; 18 (1533033819849073)
        • Kobayashi Y.
        • Myojin M.
        • Shimizu S.
        • Hosokawa M.
        Esophageal motion characteristics in thoracic esophageal cancer: Impact of clinical stage T4 versus stages T1–T3.
        Adv Radiat Oncol. 2016; 1: 222-229
        • Cohen R.J.
        • Paskalev K.
        • Litwin S.
        • Price R.A.
        • Feigenberg S.J.
        • Konski A.A.
        Esophageal motion during radiotherapy: quantification and margin implications.
        Dis Esophagus. 2010; 23: 473-479https://doi.org/10.1111/j.1442-2050.2009.01037.x
        • Patel A.A.
        • Wolfgang J.A.
        • Niemierko A.
        • Hong T.S.
        • Yock T.
        • Choi N.C.
        Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer.
        Int J Radiat Oncol Biol Phys. 2009; 74: 290-296https://doi.org/10.1016/j.ijrobp.2008.12.060
      1. Palmer J, Yang J, Pan T, Court LE. Motion of the esophagus due to cardiac motion. PLoS ONE 2014;9:e89126.

        • Yaremko B.P.
        • Guerrero T.M.
        • McAleer M.F.
        • Bucci M.K.
        • Noyola-Martinez J.
        • Nguyen L.T.
        • et al.
        Determination of respiratory motion for distal esophagus cancer using four-dimensional computed tomography.
        Int J Radiat Oncol Biol Phys. 2008; 70: 145-153
        • Sekii S.
        • Ito Y.
        • Harada K.
        • Kitaguchi M.
        • Takahashi K.
        • Inaba K.
        • et al.
        Intrafraction esophageal motion in patients with clinical T1N0 esophageal cancer.
        Rep Pract Oncol Radiother. 2018; 23: 398-401
      2. Doi Y, Murakami Y, Imano N, Takeuchi Y, Takahashi I, Nishibuchi I, et al., Quantifying esophageal motion during free-breathing and breath-hold using fiducial markers in patients with early-stage esophageal cancer. PLoS ONE 2018;13:e0198844.

        • Weiss E.
        • Wijesooriya K.
        • Keall P.
        Esophagus and spinal cord motion relative to gtv motion in four-dimensional cts of lung cancer patients.
        Radiother Oncol. 2008; 87: 44-48https://doi.org/10.1016/j.radonc.2007.12.016
        • Wang X.
        • Yang J.
        • Zhao Z.
        • Luo D.
        • Court L.
        • Zhang Y.
        • et al.
        Dosimetric impact of esophagus motion in single fraction spine stereotactic body radiotherapy.
        Phys Med Biol. 2019; 64: 115010https://doi.org/10.1088/1361-6560/ab1c2b
        • Ehrbar S.
        • Lang S.
        • Stieb S.
        • Riesterer O.
        • Stark L.S.
        • Guckenberger M.
        • et al.
        Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments.
        Zeitschrift für Medizinische Physik. 2016; 26: 45-53https://doi.org/10.1016/j.zemedi.2015.06.010
        • Chung H.
        • Jung J.
        • Jeong C.
        • Kwak J.
        • Park J.-H.
        • Kim S.S.
        • et al.
        Evaluation of delivered dose to a moving target by 4d dose reconstruction in gated volumetric modulated arc therapy.
        PLOS ONE. 2018; 13: 1-18
        • Zhang X.
        • Zhao K.L.
        • Guerrero T.M.
        • McGuire S.E.
        • Yaremko B.
        • Komaki R.
        • et al.
        Four-dimensional computed tomography-based treatment planning for intensity-modulated radiation therapy and proton therapy for distal esophageal cancer.
        Int J Radiat Oncol Biol Phys. 2008; 72: 278-287
      3. Report 83, J Int Commission RadiatUnits Measur 2016;10:NP–NP. DOI: 10.1093/jicru/10.1.Report83.

        • Rouabhi O.
        • Ma M.
        • Bayouth J.
        • Xia J.
        Impact of temporal probability in 4d dose calculation for lung tumors.
        J Appl Clin Med Phys. 2015; 16: 110-118https://doi.org/10.1120/jacmp.v16i6.5517
      4. Hugo GD, Weiss E, Sleeman WC, Balik S, Keall PJ, Lu J, et al., Data from 4d lung imaging of nsclc patients; 2016. https://wiki.cancerimagingarchive.net/x/1oNEAQ. DOI: 10.7937/K9/TCIA.2016.ELN8YGLE.

        • Clark K.
        • Vendt B.
        • Smith K.
        • Freymann J.
        • Kirby J.
        • Koppel P.
        • et al.
        The cancer imaging archive (TCIA): Maintaining and operating a public information repository.
        J Digit Imag. 2013; 26: 1045-1057https://doi.org/10.1007/s10278-013-9622-7
      5. Plastimatch, http://plastimatch.org/, 2019. Accessed on 2021-05-01.

        • Klein S.
        • Staring M.
        • Murphy K.
        • Viergever M.A.
        • Pluim J.P.W.
        elastix: A toolbox for intensity-based medical image registration.
        IEEE Trans Med Imag. 2010; 29: 196-205
        • Fechter T.
        • Adebahr S.
        • Baltas D.
        • Ben Ayed I.
        • Desrosiers C.
        • Dolz J.
        Esophagus segmentation in ct via 3d fully convolutional neural network and random walk.
        Med Phys. 2017; 44: 6341-6352https://doi.org/10.1002/mp.12593
        • Fedorov A.
        • Beichel R.
        • Kalpathy-Cramer J.
        • Finet J.
        • Fillion-Robin J.-C.
        • Pujol S.
        • Bauer C.
        • Jennings D.
        • Fennessy F.
        • Sonka M.
        • Buatti J.
        • Aylward S.
        • Miller J.V.
        • Pieper S.
        • Kikinis R.
        3d slicer as an image computing platform for the quantitative imaging network.
        Magn Reson Imag. 2012; 30 (quantitative Imaging in Cancer): 1323-1341https://doi.org/10.1016/j.mri.2012.05.001
      6. Elastix parameter file database, http://elastix.bigr.nl/wiki/index.php/Parameter_file_database, 2020. Accessed on 2021-05-01.

        • Fechter T.
        • Baltas D.
        One-shot learning for deformable medical image registration and periodic motion tracking.
        IEEE Trans Med Imag. 2020; 39: 2506-2517https://doi.org/10.1109/TMI.2020.2972616
      7. One shot image registration github repository, https://github.com/ToFec/OneShotImageRegistration, 2020. Accessed on 2021-05-01.

      8. T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons, Biologiske skrifter, I kommission hos E. Munksgaard; 1948.

      9. Medpy, https://pypi.org/project/MedPy/, 2019. Accessed on 2021-05-01.

        • Low D.A.
        • Harms W.B.
        • Mutic S.
        • Purdy J.A.
        A technique for the quantitative evaluation of dose distributions.
        Med Phys. 1998; 25: 656-661https://doi.org/10.1118/1.598248
      10. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al., Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys 2018;45:e53–e83.

        • Hussein M.
        • Clark C.
        • Nisbet A.
        Challenges in calculation of the gamma index in radiotherapy – towards good practice.
        Phys Med. 2017; 36: 1-11https://doi.org/10.1016/j.ejmp.2017.03.001
        • Han C.
        • Yu W.
        • Zheng X.
        • Zhou Y.
        • Gong C.
        • Xie C.
        • et al.
        Composite QA for intensity-modulated radiation therapy using individual volume–based 3D gamma indices.
        J Radiat Res. 2018; 59: 669-676https://doi.org/10.1093/jrr/rry061
        • Vandemeulebroucke J.
        • Rit S.
        • Kybic J.
        • Clarysse P.
        • Sarrut D.
        Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.
        Med Phys. 2011; 38: 166-178
        • Castillo E.
        • Castillo R.
        • Martinez J.
        • Shenoy M.
        • Guerrero T.
        Four-dimensional deformable image registration using trajectory modeling.
        Phys Med Biol. 2009; 55: 305
        • Castillo R.
        • Castillo E.
        • Guerra R.
        • Johnson V.E.
        • McPhail T.
        • Garg A.K.
        • et al.
        A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
        Phys Med Biol. 2009; 54: 1849