On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits


      • Reducing the epithermal neutron energy to increase treatement efficiency.
      • Therapeutic Gain higher for 1 keV neutrons compared to 10 keV neutrons in non-superficials tumours cases.
      • New dose calculation method explicited, classifying dose component by reaction type.


      Background and purpose: Accelerator-Based Boron Neutron Capture Therapy is a radiotherapy based on compact accelerator neutron sources requiring an epithermal neutron field for tumour irradiations. Neutrons of 10 keV are considered as the maximum optimised energy to treat deep-seated tumours. We investigated, by means of Monte Carlo simulations, the epithermal range from 10 eV to 10 keV in order to optimise the maximum epithermal neutron energy as a function of the tumour depth.
      Methods: A Snyder head phantom was simulated and mono-energetic neutrons with 4 different incident energies were used: 10 eV, 100 eV, 1 keV and 10 keV. 10B capture rates and absorbed dose composition on every tissue were calculated to describe and compare the effects of lowering the maximum epithermal energy. The Therapeutic Gain (TG) was estimated considering the whole brain volume.
      Results: For tumours seated at 4 cm depth, 10 eV, 100 eV and 1 keV neutrons provided respectively 54%, 36% and 18% increase on the TG compared to 10 keV neutrons. Neutrons with energies between 10 eV and 1 keV provided higher TG than 10 keV neutrons for tumours seated up to 6.4 cm depth inside the head. The size of the tumour does not change these results.
      Conclusions: Using lower epithermal energy neutrons for AB-BNCT tumour irradiation could improve treatment efficacy, delivering more therapeutic dose while reducing the dose in healthy tissues. This could lead to new Beam Shape Assembly designs in order to optimise the BNCT irradiation.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Slatkin D.N.
        A history of boron neutron capture therapy of brain tumours.
        Brain. 1991; 114: 1609-1629
        • Suzuki M.
        Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era.
        Int J Clin Oncol. 2020; 25: 43-50
        • Sauerwein W.A.
        • Wittig A.
        • Moss R.
        • Nakagawa Y.
        Neutron capture therapy: principles and applications.
        Springer Science & Business Media, 2012
        • Pazirandeh A.
        • Torkamani A.
        • Taheri A.
        Design and simulation of a neutron source based on an electron linear accelerator for BNCT of skin melanoma.
        Appl Radiat Isot. 2011; 69: 749-755
      1. ICRP, Conversion coefficients for radiological protection quantities for external radiation exposures., ICRP Publication 116 Ann. ICRP; 2010 40(2–5).

        • Barth R.
        • Soloway A.
        • Fairchild R.
        • Brugger R.
        Boron neutron capture therapy for cancer.
        Cancer. 1992; 70: 2995-3007
        • Auterinen I.
        • Serén T.
        • Anttila K.
        • Kosunen A.
        • Savolainen S.
        Measurement of free beam neutron spectra at eight BNCT facilities worldwide.
        Appl Radiat Isot. 2004; 61: 1021-1026
        • Moss R.L.
        • Stecher-Rasmussen F.
        • Rassow J.
        • Morrissey J.
        • Voorbraak W.
        • Verbakel W.
        • et al.
        Procedural and practical applications of radiation measurements for BNCT at the HFR Petten.
        Nucl Instrum Methods Phys Res B. 2004; 213: 633-636
        • Auterinen I.
        • Hiismäki P.
        • Kotiluoto P.
        • Rosenberg R.J.
        • Salmenhaara S.
        • Seppälä T.
        • et al.
        Metamorphosis of a 35 year-old TRIGA reactor into a modern BNCT facility.
        Front Neutron Capture Therapy. 2001; : 267-275
        • Wang L.W.
        • Wang S.J.
        • Chu P.Y.
        • Ho C.Y.
        • Jiang S.H.
        • Liu Y.W.
        • et al.
        BNCT for locally recurrent head and neck cancer: Preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor.
        Appl Radiat Isot. 2011; 69: 1803-1806
      2. Letourneau A, Marchix A, Tran NH, Chauvin N, Menelle A, Ott F, Schwindling J. Development of compact accelerator neutron source. EPJ Web Conf; 2017, 146 0–4.

        • Kreiner A.J.
        • Bergueiro J.
        • Cartelli D.
        • Baldo M.
        • Castell W.
        • Asoia J.G.
        • et al.
        Present status of accelerator-based BNCT.
        Rep Pract Oncol Radiother. 2016; 21: 95-101
        • Delorme R.
        • Miquel L.
        • Dauvergne D.
        • Beuve M.
        • Monini C.
        • Testa E.
        • et al.
        Theoretical approach based on Monte-Carlo simulations to predict the cell survival following BNCT.
        ICNCT-17, Columbia, United States2016: 2016
        • Muraz J.-F.
        • Santos D.
        • Ghetta V.
        • Giraud J.
        • Marpaud J.
        • Hervé M.
        • et al.
        Development of a regenerated beryllium target and a thermal test facility for compact accelerator-based neutron sources.
        EPJ Web Conf. 2020; 231: 03003
      3. Capoulat ME, Sauzet N, Valda AA, Gagetti L, Guillaudin O, Lebreton L, et al. Neutron spectrometry of the 9 Be(d (1.45MeV), n) 10 B reaction for accelerator-based BNCT. Nucl Instrum Methods Phys Res B; 2019 445 57–62.

      4. International Commission on Radiation Units and Measurements, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, ICRU-report 46; 1992.

      5. Neutron capture therapy: principles and applications, Springer-Verlag Berlin Heidelberg; 2012.

        • González S.J.
        • Pozzi E.C.
        • Monti Hughes A.
        • Provenzano L.
        • Koivunoro H.
        • Carando D.G.
        • et al.
        Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: Clinical application to boron neutron capture therapy for head and neck cancer.
        Phys Med Biol. 2017; 62: 7938-7958
        • Sato T.
        • Masunaga S.I.
        • Kumada H.
        • Hamada N.
        Depth distributions of RBE-weighted dose and photon-isoeffective dose for Boron Neutron Capture Therapy.
        Radiat Prot Dosim. 2019; 183: 247-250
        • Coderre J.A.
        • Button T.M.
        • Micca P.L.
        • Fisher C.D.
        • Nawrocky M.M.
        • Liu H.B.
        Neutron capture therapy of the 9l rat gliosarcoma using the P-boronophenylalanine-fructose complex.
        Int J Radiat Oncol Biol Phys. 1994; 30: 643-652
      6. Neutron Physics, volume Part I, Springer-Verlag Berlin Gttingen Heidelberg; 1964.

        • Fairchild R.G.
        • Slatkin D.N.
        • Coderre J.A.
        • Micca P.L.
        • Laster B.H.
        • Kahl S.B.
        • et al.
        Optimization of boron and neutron delivery for neutron capture therapy.
        Pigment Cell Res. 1989; 2: 309-318
        • Goorley J.T.
        • Kiger W.S.
        • Zamenhof R.G.
        Reference dosimetry calculations for Neutron Capture Therapy with comparison of analytical and voxel models.
        Med Phys. 2002; 29: 145-156
        • Capoulat M.E.
        • Kreiner A.J.
        A 13C(d, n)-based epithermal neutron source for Boron Neutron Capture Therapy.
        Phys Medica. 2017; 33: 106-113
      7. Ballinger C. The direct S(alpha,beta) method for thermal nuetron scattering; 1995.

      8. LA-UR-03-1987, X-5 Monte Carlo Team, MCNP – A general Monte Carlo N-Particle transport code, version 5, LANL volume I: overview and theory; 2003.

        • Yanch J.C.
        • Zhou X.L.
        • Brownell G.L.
        A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy.
        Radiat Res. 1991; 126: 1-20
        • Nievaart V.A.
        • Moss R.L.
        • Kloosterman J.L.
        • van der Hagen T.H.
        • van Dam H.
        A parameter study to determine the optimal source neutron energy in boron neutron capture therapy of brain tumours.
        Phys Med Biol. 2004; 49: 4277-4292
        • Bisceglie E.
        • Colangelo P.
        • Colonna N.
        • Santorelli P.
        • Variale V.
        On the optimal energy of epithermal neutron beams for BNCT.
        Phys Med Biol. 2000; 45: 49-58
        • Sauzet N.
        • Santos D.
        • Guillaudin O.
        • Bosson G.
        • Bouvier J.
        • Descombes T.
        • et al.
        Fast neutron spectroscopy with Mimac-FastN : A mobile and directional fast neutron spectrometer, from 1 MeV up to 15 MeV.
        J Phys : Conf Ser. 2020; 1498: 4-8
        • Attix F.H.
        Introduction to radiological physics and radiation dosimetry.
        John Wiley & Sons, 2008
        • Sun X.
        • Qu W.
        • Duan J.
        • Zhang J.
        New calculation method of neutron kerma coefficients for carbon and oxygen below 30 MeV.
        PRC – Nucl Phys. 2008; 78: 1-12
        • Papanikolaou N.
        • Battista J.J.
        • Boyer A.L.
        • Kappas C.
        • Klein E.
        • Mackie T.R.
        AAPM report 85: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams.
        Report of the AAPM radiation therapy committee task group. 2004; 65: 85
        • Coderre J.
        • Hopewell J.
        • Turcotte J.
        • Riley K.
        • Binns P.
        • Kiger III, W.
        • Harling O.
        Tolerance of normal human brain to boron neutron capture therapy.
        Appl Radiat Isot. 2004; 61: 1083-1087
        • Palmer M.R.
        • Goorley J.T.
        • Kiger W.S.
        • Busse P.M.
        • Riley K.J.
        • Harling O.K.
        • Zamenhof R.G.
        Treatment planning and dosimetry for the Harvard-MIT Phase I clinical trial of cranial neutron capture therapy.
        Int J Radiat Oncol Biol Phys. 2002; 53: 1361-1379