Advertisement

Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study

      Highlights

      • MPI is a background- and radiation-free tomographic imaging method.
      • Enables 3D real-time imaging.
      • First time flow diverters were investigated using MPI.
      • MPI visualizes the lumen of nitinol FD stents without stent-induced artifacts.

      Abstract

      Purpose

      Magnetic Particle Imaging (MPI) is a new, background- and radiation-free tomographic imaging method that enables near real-time imaging of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal and spatial resolution. This phantom study aims to investigate the potential of MPI for visualization of the stent lumen in intracranial flow diverters (FD).

      Methods

      Nitinol FD of different dimensions (outer diameter: 3.5 mm, 4.0 mm, 5.5 mm; total length: 22–40 mm) were scanned in vascular phantoms in a custom-built MPI scanner (in-plane resolution: ~ 2 mm, field of view: 65 mm length, 29 mm diameter). Phantoms were filled with diluted (1:50) SPION tracer agent Ferucarbotran (10 µmol (Fe)/ml; NaCL). Each phantom was measured in 32 different projections (overall acquisition time per image: 3200 ms, 5 averages). After image reconstruction from raw data, two radiologists assessed image quality using a 5-point Likert scale. The signal intensity profile was measured using a semi-automatic evaluation tool.

      Results

      MPI visualized the lumen of all FD without relevant differences between the stented vessel phantom and the reference phantom. At 3.5 mm image quality was slightly inferior to the larger diameters. The FD themselves neither generated an MPI signal nor did they lead to relevant imaging artifacts. Ratings of both radiologists showed no significant difference, interrater reliability was good (ICC 0.84). A quantitative evaluation of the signal intensity profile did not reveal any significant differences (p > 0.05) either.

      Conclusion

      MPI visualizes the lumen of nitinol FD stents in vessel phantoms without relevant stent-induced artifacts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thompson B.G.
        • Brown R.D.
        • Amin-Hanjani S.
        • Broderick J.P.
        • Cockroft K.M.
        • Connolly E.S.
        • et al.
        Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the american heart association/american stroke association.
        Stroke. 2015; 46: 2368-2400https://doi.org/10.1161/STR.0000000000000070
      1. Maragkos GA, Dmytriw AA, Salem MM, Tutino VM, Meng H, Cognard C et al. Overview of Different Flow Diverters and Flow Dynamics. Neurosurgery 2020;86(Supplement_1):S21-S34. https://doi.org/10.1093/neuros/nyz323.

        • Wakhloo A.K.
        • Gounis M.J.
        Revolution in aneurysm treatment: flow diversion to cure aneurysms: a paradigm shift.
        Neurosurgery. 2014; 61: 111-120https://doi.org/10.1227/NEU.0000000000000392
        • Patzig M.
        • Forbrig R.
        • Ertl L.
        • Brückmann H.
        • Fesl G.
        Intracranial aneurysms treated by flow-diverting stents: long-term follow-up with contrast-enhanced magnetic resonance angiography.
        Cardiovasc Intervent Radiol. 2017; 40: 1713-1722https://doi.org/10.1007/s00270-017-1732-z
        • Luecking H.
        • Doerfler A.
        • Goelitz P.
        • Hoelter P.
        • Engelhorn T.
        • Lang S.
        Two- to five-year follow-up of 78 patients after treatment with the flow redirection endoluminal device.
        Interv Neuroradiol. 2020; 26: 38-44https://doi.org/10.1177/1591019919878551
        • Aguilar Pérez M.
        • Bhogal P.
        • Henkes E.
        • Ganslandt O.
        • Bäzner H.
        • Henkes H.
        In-stent stenosis after p64 flow diverter treatment.
        Clin Neuroradiol. 2018; 28: 563-568https://doi.org/10.1007/s00062-017-0591-y
        • Cohen J.E.
        • Gomori J.M.
        • Moscovici S.
        • Leker R.R.
        • Itshayek E.
        Delayed complications after flow-diverter stenting: reactive in-stent stenosis and creeping stents.
        J Clin Neurosci. 2014; 21: 1116-1122https://doi.org/10.1016/j.jocn.2013.11.010
        • Bendszus M.
        • Stoll G.
        Silent cerebral ischaemia: Hidden fingerprints of invasive medical procedures.
        The Lancet Neurology. 2006; 5: 364-372https://doi.org/10.1016/S1474-4422(06)70412-4
        • Bouillot P.
        • Brina O.
        • Delattre B.M.A.
        • Ouared R.
        • Pellaton A.
        • Yilmaz H.
        • et al.
        Neurovascular stent artifacts in 3D-TOF and 3D-PCMRI: Influence of stent design on flow measurement.
        Magn Reson Med. 2019; 81: 560-572https://doi.org/10.1002/mrm.27352
        • Wang Y.
        • Truong T.N.
        • Yen C.
        • Bilecen D.
        • Watts R.
        • Trost D.W.
        • et al.
        Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents.
        Magn Reson Med. 2003; 49: 972-976https://doi.org/10.1002/mrm.10450
        • Bartels L.W.
        • Bakker C.J.G.
        • Viergever M.A.
        Improved lumen visualization in metallic vascular implants by reducing RF artifacts.
        Magn Reson Med. 2002; 47: 171-180https://doi.org/10.1002/mrm.10004
        • Gleich B.
        • Weizenecker J.
        Tomographic imaging using the nonlinear response of magnetic particles.
        Nature. 2005; 435: 1214-1217https://doi.org/10.1038/nature03808
        • Vogel P.
        • Ruckert M.A.
        • Kemp S.J.
        • Khandhar A.P.
        • Ferguson R.M.
        • Herz S.
        • et al.
        Micro-traveling wave magnetic particle imaging—sub-millimeter resolution with optimized tracer LS-008.
        IEEE Trans. Magn. 2019; 55: 1-7https://doi.org/10.1109/TMAG.2019.2924198
        • Vogel P.
        • Ruckert M.A.
        • Klauer P.
        • Kullmann W.H.
        • Jakob P.M.
        • Behr V.C.
        Superspeed traveling wave magnetic particle imaging.
        IEEE Trans. Magn. 2015; 51: 1-3https://doi.org/10.1109/TMAG.2014.2322897
        • Weizenecker J.
        • Gleich B.
        • Rahmer J.
        • Dahnke H.
        • Borgert J.
        Three-dimensional real-time in vivo magnetic particle imaging.
        Phys. Med. Biol. 2009; 54: L1-L10https://doi.org/10.1088/0031-9155/54/5/L01
      2. Patrick Vogel, Martin A. Rückert, Peter Klauer, Stefan Herz, Thomas Kampf, Thorsten Bley et al. Real-time 3D Dynamic Rotating Slice-Scanning Mode for Traveling Wave MPI. 1 2017;3(2).

        • Vogel P.
        • Ruckert M.A.
        • Kampf T.
        • Herz S.
        • Stang A.
        • Wockel L.
        • et al.
        Superspeed bolus visualization for vascular magnetic particle imaging.
        IEEE Trans Med Imaging. 2020; https://doi.org/10.1109/TMI.2020.2965724
        • Herz S.
        • Vogel P.
        • Dietrich P.
        • Kampf T.
        • Rückert M.A.
        • Kickuth R.
        • et al.
        Magnetic particle imaging guided real-time percutaneous transluminal angioplasty in a phantom model.
        Cardiovasc Intervent Radiol. 2018; 41: 1100-1105https://doi.org/10.1007/s00270-018-1955-7
        • Molwitz I.
        • Ittrich H.
        • Knopp T.
        • Mummert T.
        • Salamon J.
        • Jung C.
        • et al.
        First magnetic particle imaging angiography in human-sized organs by employing a multimodal ex vivo pig kidney perfusion system.
        Physiol Meas. 2019; 40105002https://doi.org/10.1088/1361-6579/ab4436
        • Graeser M.
        • Knopp T.
        • Szwargulski P.
        • Friedrich T.
        • von Gladiss A.
        • Kaul M.
        • et al.
        Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil.
        Sci Rep. 2017; 7: 6872https://doi.org/10.1038/s41598-017-06992-5
        • Zheng B.
        • Vazin T.
        • Goodwill P.W.
        • Conway A.
        • Verma A.
        • Saritas E.U.
        • et al.
        Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.
        Sci Rep. 2015; 5: 14055https://doi.org/10.1038/srep14055
        • Haegele J.
        • Rahmer J.
        • Gleich B.
        • Borgert J.
        • Wojtczyk H.
        • Panagiotopoulos N.
        • et al.
        Magnetic particle imaging: visualization of instruments for cardiovascular intervention.
        Radiology. 2012; 265: 933-938https://doi.org/10.1148/radiol.12120424
        • Herz S.
        • Vogel P.
        • Kampf T.
        • Ruckert M.A.
        • Veldhoen S.
        • Behr V.C.
        • et al.
        Magnetic particle imaging for quantification of vascular stenoses: a phantom study.
        IEEE Trans Med Imaging. 2018; 37: 61-67https://doi.org/10.1109/TMI.2017.2717958
        • Herz S.
        • Vogel P.
        • Kampf T.
        • Dietrich P.
        • Veldhoen S.
        • Rückert M.A.
        • et al.
        Magnetic particle imaging-guided stenting.
        J Endovasc Ther. 2019; 1526602819851202https://doi.org/10.1177/1526602819851202
        • Sedlacik J.
        • Frölich A.
        • Spallek J.
        • Forkert N.D.
        • Faizy T.D.
        • Werner F.
        • et al.
        Magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics.
        PLoS ONE. 2016; 11e0160097https://doi.org/10.1371/journal.pone.0160097
        • Wegner F.
        • Friedrich T.
        • von Gladiss A.
        • Grzyska U.
        • Sieren M.M.
        • Lüdtke-Buzug K.
        • et al.
        Magnetic particle imaging: artifact-free metallic stent lumen imaging in a phantom study.
        Cardiovasc Intervent Radiol. 2019; https://doi.org/10.1007/s00270-019-02347-x
        • Vaalma S.
        • Rahmer J.
        • Panagiotopoulos N.
        • Duschka R.L.
        • Borgert J.
        • Barkhausen J.
        • et al.
        Magnetic particle imaging (MPI): experimental quantification of vascular stenosis using stationary stenosis phantoms.
        PLoS ONE. 2017; 12e0168902https://doi.org/10.1371/journal.pone.0168902
        • Salamon J.
        • Hofmann M.
        • Jung C.
        • Kaul M.G.
        • Werner F.
        • Them K.
        • et al.
        Magnetic particle / magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach.
        PLoS ONE. 2016; 11e0156899https://doi.org/10.1371/journal.pone.0156899
        • Weller D.
        • Salamon J.M.
        • Frölich A.
        • Möddel M.
        • Knopp T.
        • Werner R.
        Combining direct 3D volume rendering and magnetic particle imaging to advance radiation-free real-time 3D guidance of vascular interventions.
        Cardiovasc Intervent Radiol. 2020; 43: 322-330https://doi.org/10.1007/s00270-019-02340-4
        • Dietrich P.
        • Vogel P.
        • Kampf T.
        • Rückert M.A.
        • Behr V.C.
        • Bley T.A.
        • et al.
        Near real-time magnetic particle imaging for visual assessment of vascular stenosis in a phantom model.
        Phys Med. 2021; 81: 210-214https://doi.org/10.1016/j.ejmp.2020.12.020
        • Graeser M.
        • Thieben F.
        • Szwargulski P.
        • Werner F.
        • Gdaniec N.
        • Boberg M.
        • et al.
        Human-sized magnetic particle imaging for brain applications.
        Nat Commun. 2019; 10: 1936https://doi.org/10.1038/s41467-019-09704-x
        • Ludewig P.
        • Gdaniec N.
        • Sedlacik J.
        • Forkert N.D.
        • Szwargulski P.
        • Graeser M.
        • et al.
        Magnetic particle imaging for real-time perfusion imaging in acute stroke.
        ACS Nano. 2017; 11: 10480-10488https://doi.org/10.1021/acsnano.7b05784
        • Wu L.C.
        • Zhang Y.
        • Steinberg G.
        • Qu H.
        • Huang S.
        • Cheng M.
        • et al.
        A review of magnetic particle imaging and perspectives on neuroimaging.
        AJNR Am J Neuroradiol. 2019; 40: 206-212https://doi.org/10.3174/ajnr.A5896
        • Orendorff R.
        • Peck A.J.
        • Zheng B.
        • Shirazi S.N.
        • Matthew Ferguson R.
        • Khandhar A.P.
        • et al.
        First in vivo traumatic brain injury imaging via magnetic particle imaging.
        Phys. Med. Biol. 2017; 62: 3501-3509https://doi.org/10.1088/1361-6560/aa52ad
        • Saritas E.U.
        • Goodwill P.W.
        • Croft L.R.
        • Konkle J.J.
        • Lu K.
        • Zheng B.
        • et al.
        Magnetic particle imaging (MPI) for NMR and MRI researchers.
        J Magn Reson. 2013; 229: 116-126https://doi.org/10.1016/j.jmr.2012.11.029
      3. Wegner F, Gladiss A von, Haegele J, Grzyska U, Sieren M, Lüdtke-Buzug K et al. Stent Lumen Quantification of 21 Endovascular Stents with MPI. International Journal on Magnetic Particle Imaging, Vol 6 No 2 Suppl. 1 (2020) / International Journal on Magnetic Particle Imaging, Vol 6 No 2 Suppl. 1 (2020) 2020. https://doi.org/10.18416/IJMPI.2020.2009021.

        • Vogel P.
        • Ruckert M.A.
        • Klauer P.
        • Kullmann W.H.
        • Jakob P.M.
        • Behr V.C.
        Traveling wave magnetic particle imaging.
        IEEE Trans Med Imaging. 2014; 33: 400-407https://doi.org/10.1109/TMI.2013.2285472
        • Vogel P.
        • Ruckert M.A.
        • Klauer P.
        • Kullmann W.H.
        • Jakob P.M.
        • Behr V.C.
        Rotating slice scanning mode for traveling wave MPI.
        IEEE Trans. Magn. 2015; 51: 1-3https://doi.org/10.1109/TMAG.2014.2335255
        • Ding Y.H.
        • Tieu T.
        • Kallmes D.F.
        Experimental testing of a new generation of flow diverters in sidewall aneurysms in rabbits.
        AJNR Am J Neuroradiol. 2015; 36: 732-736https://doi.org/10.3174/ajnr.A4167
        • Vogel P.
        • Herz S.
        • Kampf T.
        • Rückert M.A.
        • Bley T.A.
        • Behr V.C.
        Low latency real-time reconstruction for MPI systems.
        Int J MPI. 2017;
        • Vogel P.
        • Rückert M.A.
        • Klauer P.
        • Kullmann W.H.
        • Jakob P.M.
        • Behr V.C.
        First in vivo traveling wave magnetic particle imaging of a beating mouse heart.
        Phys Med Biol. 2016; 61: 6620https://doi.org/10.1088/0031-9155/61/18/6620
      4. Vogel P, Kampf T, Rückert MA, Behr VC. Flexible and Dynamic Patch Reconstruction for Traveling Wave Magnetic Particle Imaging. 11 pages / International Journal on Magnetic Particle Imaging, Vol.2, Article ID 1611001 / International Journal on Magnetic Particle Imaging, Vol.2, No.2, Article ID 1611001 2016. https://doi.org/10.18416/IJMPI.2016.1611001.

        • Likert R.
        A technique for the measurement of attitudes.
        Archiv Psychol. 1932; 140: 5-55
        • Koo T.K.
        • Li M.Y.
        A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
        J Chiropract Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
        • Kratz H.
        • Mohtashamdolatshahi A.
        • Eberbeck D.
        • Kosch O.
        • Hauptmann R.
        • Wiekhorst F.
        • et al.
        MPI phantom study with a high-performing multicore tracer made by coprecipitation.
        Nanomaterials (Basel). 2019; 9https://doi.org/10.3390/nano9101466
        • Kaul M.G.
        • Mummert T.
        • Jung C.
        • Salamon J.
        • Khandhar A.P.
        • Ferguson R.M.
        • et al.
        In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.
        Phys Med Biol. 2017; 62: 3454-3469https://doi.org/10.1088/1361-6560/aa5780
        • Haegele J.
        • Vaalma S.
        • Panagiotopoulos N.
        • Barkhausen J.
        • Vogt F.M.
        • Borgert J.
        • et al.
        Multi-color magnetic particle imaging for cardiovascular interventions.
        Phys Med Biol. 2016; 61: N415-N426https://doi.org/10.1088/0031-9155/61/16/N415
        • Pharma B.S.
        • AG.
        Resovist [package insert].
        Bayer Schering Pharma AG, Leverkusen, Germany2007
      5. Southern P, Pankhurst QA. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International journal of hyperthermia the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2018;34(6):671–86. https://doi.org/10.1080/02656736.2017.1365953.

        • Schmale I.
        • Gleich B.
        • Rahmer J.
        • Bontus C.
        • Schmidt J.
        • Borgert J.
        MPI safety in the view of MRI safety standards.
        IEEE Trans. Magn. 2015; 51: 1-4https://doi.org/10.1109/TMAG.2014.2322940
        • Duschka R.L.
        • Wojtczyk H.
        • Panagiotopoulos N.
        • Haegele J.
        • Bringout G.
        • Buzug T.M.
        • et al.
        Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences.
        J Healthc Eng. 2014; 5: 79-93https://doi.org/10.1260/2040-2295.5.1.79
        • Wegner F.
        • Friedrich T.
        • Panagiotopoulos N.
        • Valmaa S.
        • Goltz J.P.
        • Vogt F.M.
        • et al.
        First heating measurements of endovascular stents in magnetic particle imaging.
        Phys Med Biol. 2018; 63: 45005https://doi.org/10.1088/1361-6560/aaa79c
        • Vogel P.
        • Lother S.
        • Rückert M.A.
        • Kullmann W.H.
        • Jakob P.M.
        • Fidler F.
        • et al.
        MRI meets MPI: a bimodal MPI-MRI tomograph.
        IEEE Trans Med Imaging. 2014; 33: 1954-1959https://doi.org/10.1109/TMI.2014.2327515
        • Vogel P.
        • Markert J.
        • Rückert M.A.
        • Herz S.
        • Keßler B.
        • Dremel K.
        • et al.
        Magnetic particle imaging meets computed tomography: first simultaneous imaging.
        Sci Rep. 2019; 9: 12627https://doi.org/10.1038/s41598-019-48960-1
        • Katsura M.
        • Sato J.
        • Akahane M.
        • Kunimatsu A.
        • Abe O.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        Radiographics. 2018; 38: 450-461https://doi.org/10.1148/rg.2018170102
        • Jungmann P.M.
        • Agten C.A.
        • Pfirrmann C.W.
        • Sutter R.
        Advances in MRI around metal.
        J Magn Reson Imaging. 2017; 46: 972-991https://doi.org/10.1002/jmri.25708
        • Bunck A.C.
        • Jüttner A.
        • Kröger J.R.
        • Burg M.C.
        • Kugel H.
        • Niederstadt T.
        • et al.
        4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents–a phantom study.
        Eur J Radiol. 2012; 81: e929-e937https://doi.org/10.1016/j.ejrad.2012.05.032
        • Duarte Conde M.P.
        • de Korte A.M.
        • Meijer F.J.A.
        • Aquarius R.
        • Boogaarts H.D.
        • Bartels R.H.M.A.
        • et al.
        Subtraction CTA: an alternative imaging option for the follow-up of flow-diverter-treated aneurysms?.
        Am J Neuroradiol. 2018; 39: 2051-2056https://doi.org/10.3174/ajnr.A5817
        • Zwarzany Ł.
        • Poncyljusz W.
        • Burke T.H.
        Flat detector CT and its applications in the endovascular treatment of wide-necked intracranial aneurysms-a literature review.
        Eur J Radiol. 2017; 88: 26-31https://doi.org/10.1016/j.ejrad.2016.12.027