Highlights
- •MPI is a background- and radiation-free tomographic imaging method.
- •Enables 3D real-time imaging.
- •First time flow diverters were investigated using MPI.
- •MPI visualizes the lumen of nitinol FD stents without stent-induced artifacts.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the american heart association/american stroke association.Stroke. 2015; 46: 2368-2400https://doi.org/10.1161/STR.0000000000000070
Maragkos GA, Dmytriw AA, Salem MM, Tutino VM, Meng H, Cognard C et al. Overview of Different Flow Diverters and Flow Dynamics. Neurosurgery 2020;86(Supplement_1):S21-S34. https://doi.org/10.1093/neuros/nyz323.
- Revolution in aneurysm treatment: flow diversion to cure aneurysms: a paradigm shift.Neurosurgery. 2014; 61: 111-120https://doi.org/10.1227/NEU.0000000000000392
- Intracranial aneurysms treated by flow-diverting stents: long-term follow-up with contrast-enhanced magnetic resonance angiography.Cardiovasc Intervent Radiol. 2017; 40: 1713-1722https://doi.org/10.1007/s00270-017-1732-z
- Two- to five-year follow-up of 78 patients after treatment with the flow redirection endoluminal device.Interv Neuroradiol. 2020; 26: 38-44https://doi.org/10.1177/1591019919878551
- In-stent stenosis after p64 flow diverter treatment.Clin Neuroradiol. 2018; 28: 563-568https://doi.org/10.1007/s00062-017-0591-y
- Delayed complications after flow-diverter stenting: reactive in-stent stenosis and creeping stents.J Clin Neurosci. 2014; 21: 1116-1122https://doi.org/10.1016/j.jocn.2013.11.010
- Silent cerebral ischaemia: Hidden fingerprints of invasive medical procedures.The Lancet Neurology. 2006; 5: 364-372https://doi.org/10.1016/S1474-4422(06)70412-4
- Neurovascular stent artifacts in 3D-TOF and 3D-PCMRI: Influence of stent design on flow measurement.Magn Reson Med. 2019; 81: 560-572https://doi.org/10.1002/mrm.27352
- Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents.Magn Reson Med. 2003; 49: 972-976https://doi.org/10.1002/mrm.10450
- Improved lumen visualization in metallic vascular implants by reducing RF artifacts.Magn Reson Med. 2002; 47: 171-180https://doi.org/10.1002/mrm.10004
- Tomographic imaging using the nonlinear response of magnetic particles.Nature. 2005; 435: 1214-1217https://doi.org/10.1038/nature03808
- Micro-traveling wave magnetic particle imaging—sub-millimeter resolution with optimized tracer LS-008.IEEE Trans. Magn. 2019; 55: 1-7https://doi.org/10.1109/TMAG.2019.2924198
- Superspeed traveling wave magnetic particle imaging.IEEE Trans. Magn. 2015; 51: 1-3https://doi.org/10.1109/TMAG.2014.2322897
- Three-dimensional real-time in vivo magnetic particle imaging.Phys. Med. Biol. 2009; 54: L1-L10https://doi.org/10.1088/0031-9155/54/5/L01
Patrick Vogel, Martin A. Rückert, Peter Klauer, Stefan Herz, Thomas Kampf, Thorsten Bley et al. Real-time 3D Dynamic Rotating Slice-Scanning Mode for Traveling Wave MPI. 1 2017;3(2).
- Superspeed bolus visualization for vascular magnetic particle imaging.IEEE Trans Med Imaging. 2020; https://doi.org/10.1109/TMI.2020.2965724
- Magnetic particle imaging guided real-time percutaneous transluminal angioplasty in a phantom model.Cardiovasc Intervent Radiol. 2018; 41: 1100-1105https://doi.org/10.1007/s00270-018-1955-7
- First magnetic particle imaging angiography in human-sized organs by employing a multimodal ex vivo pig kidney perfusion system.Physiol Meas. 2019; 40105002https://doi.org/10.1088/1361-6579/ab4436
- Towards picogram detection of superparamagnetic iron-oxide particles using a gradiometric receive coil.Sci Rep. 2017; 7: 6872https://doi.org/10.1038/s41598-017-06992-5
- Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.Sci Rep. 2015; 5: 14055https://doi.org/10.1038/srep14055
- Magnetic particle imaging: visualization of instruments for cardiovascular intervention.Radiology. 2012; 265: 933-938https://doi.org/10.1148/radiol.12120424
- Magnetic particle imaging for quantification of vascular stenoses: a phantom study.IEEE Trans Med Imaging. 2018; 37: 61-67https://doi.org/10.1109/TMI.2017.2717958
- Magnetic particle imaging-guided stenting.J Endovasc Ther. 2019; 1526602819851202https://doi.org/10.1177/1526602819851202
- Magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics.PLoS ONE. 2016; 11e0160097https://doi.org/10.1371/journal.pone.0160097
- Magnetic particle imaging: artifact-free metallic stent lumen imaging in a phantom study.Cardiovasc Intervent Radiol. 2019; https://doi.org/10.1007/s00270-019-02347-x
- Magnetic particle imaging (MPI): experimental quantification of vascular stenosis using stationary stenosis phantoms.PLoS ONE. 2017; 12e0168902https://doi.org/10.1371/journal.pone.0168902
- Magnetic particle / magnetic resonance imaging: in-vitro MPI-guided real time catheter tracking and 4D angioplasty using a road map and blood pool tracer approach.PLoS ONE. 2016; 11e0156899https://doi.org/10.1371/journal.pone.0156899
- Combining direct 3D volume rendering and magnetic particle imaging to advance radiation-free real-time 3D guidance of vascular interventions.Cardiovasc Intervent Radiol. 2020; 43: 322-330https://doi.org/10.1007/s00270-019-02340-4
- Near real-time magnetic particle imaging for visual assessment of vascular stenosis in a phantom model.Phys Med. 2021; 81: 210-214https://doi.org/10.1016/j.ejmp.2020.12.020
- Human-sized magnetic particle imaging for brain applications.Nat Commun. 2019; 10: 1936https://doi.org/10.1038/s41467-019-09704-x
- Magnetic particle imaging for real-time perfusion imaging in acute stroke.ACS Nano. 2017; 11: 10480-10488https://doi.org/10.1021/acsnano.7b05784
- A review of magnetic particle imaging and perspectives on neuroimaging.AJNR Am J Neuroradiol. 2019; 40: 206-212https://doi.org/10.3174/ajnr.A5896
- First in vivo traumatic brain injury imaging via magnetic particle imaging.Phys. Med. Biol. 2017; 62: 3501-3509https://doi.org/10.1088/1361-6560/aa52ad
- Magnetic particle imaging (MPI) for NMR and MRI researchers.J Magn Reson. 2013; 229: 116-126https://doi.org/10.1016/j.jmr.2012.11.029
Wegner F, Gladiss A von, Haegele J, Grzyska U, Sieren M, Lüdtke-Buzug K et al. Stent Lumen Quantification of 21 Endovascular Stents with MPI. International Journal on Magnetic Particle Imaging, Vol 6 No 2 Suppl. 1 (2020) / International Journal on Magnetic Particle Imaging, Vol 6 No 2 Suppl. 1 (2020) 2020. https://doi.org/10.18416/IJMPI.2020.2009021.
- Traveling wave magnetic particle imaging.IEEE Trans Med Imaging. 2014; 33: 400-407https://doi.org/10.1109/TMI.2013.2285472
- Rotating slice scanning mode for traveling wave MPI.IEEE Trans. Magn. 2015; 51: 1-3https://doi.org/10.1109/TMAG.2014.2335255
- Experimental testing of a new generation of flow diverters in sidewall aneurysms in rabbits.AJNR Am J Neuroradiol. 2015; 36: 732-736https://doi.org/10.3174/ajnr.A4167
- Low latency real-time reconstruction for MPI systems.Int J MPI. 2017;
- First in vivo traveling wave magnetic particle imaging of a beating mouse heart.Phys Med Biol. 2016; 61: 6620https://doi.org/10.1088/0031-9155/61/18/6620
Vogel P, Kampf T, Rückert MA, Behr VC. Flexible and Dynamic Patch Reconstruction for Traveling Wave Magnetic Particle Imaging. 11 pages / International Journal on Magnetic Particle Imaging, Vol.2, Article ID 1611001 / International Journal on Magnetic Particle Imaging, Vol.2, No.2, Article ID 1611001 2016. https://doi.org/10.18416/IJMPI.2016.1611001.
- A technique for the measurement of attitudes.Archiv Psychol. 1932; 140: 5-55
- A guideline of selecting and reporting intraclass correlation coefficients for reliability research.J Chiropract Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
- MPI phantom study with a high-performing multicore tracer made by coprecipitation.Nanomaterials (Basel). 2019; 9https://doi.org/10.3390/nano9101466
- In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist.Phys Med Biol. 2017; 62: 3454-3469https://doi.org/10.1088/1361-6560/aa5780
- Multi-color magnetic particle imaging for cardiovascular interventions.Phys Med Biol. 2016; 61: N415-N426https://doi.org/10.1088/0031-9155/61/16/N415
- Resovist [package insert].Bayer Schering Pharma AG, Leverkusen, Germany2007
Southern P, Pankhurst QA. Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models. International journal of hyperthermia the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2018;34(6):671–86. https://doi.org/10.1080/02656736.2017.1365953.
- MPI safety in the view of MRI safety standards.IEEE Trans. Magn. 2015; 51: 1-4https://doi.org/10.1109/TMAG.2014.2322940
- Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences.J Healthc Eng. 2014; 5: 79-93https://doi.org/10.1260/2040-2295.5.1.79
- First heating measurements of endovascular stents in magnetic particle imaging.Phys Med Biol. 2018; 63: 45005https://doi.org/10.1088/1361-6560/aaa79c
- MRI meets MPI: a bimodal MPI-MRI tomograph.IEEE Trans Med Imaging. 2014; 33: 1954-1959https://doi.org/10.1109/TMI.2014.2327515
- Magnetic particle imaging meets computed tomography: first simultaneous imaging.Sci Rep. 2019; 9: 12627https://doi.org/10.1038/s41598-019-48960-1
- Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.Radiographics. 2018; 38: 450-461https://doi.org/10.1148/rg.2018170102
- Advances in MRI around metal.J Magn Reson Imaging. 2017; 46: 972-991https://doi.org/10.1002/jmri.25708
- 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents–a phantom study.Eur J Radiol. 2012; 81: e929-e937https://doi.org/10.1016/j.ejrad.2012.05.032
- Subtraction CTA: an alternative imaging option for the follow-up of flow-diverter-treated aneurysms?.Am J Neuroradiol. 2018; 39: 2051-2056https://doi.org/10.3174/ajnr.A5817
- Flat detector CT and its applications in the endovascular treatment of wide-necked intracranial aneurysms-a literature review.Eur J Radiol. 2017; 88: 26-31https://doi.org/10.1016/j.ejrad.2016.12.027