Highlights
- •A convolutional neural network is proposed for fetal biometry measurement.
- •MFP-Unet architecture is modified and attention gates are incorporated.
- •A novel algorithm is also developed for detection femur images.
- •A system is proposed for determining the second channel of the network.
- •The performance of the model is evaluated using public and prepared datasets.
Abstract
Purpose
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Deep learning in medical ultrasound analysis: a review.Engineering. 2019; 5: 261-275https://doi.org/10.1016/j.eng.2018.11.020
- Application of adaptive neuro-fuzzy inference system for prediction of neutron yield of IR-IECF facility in high voltages.J Fusion Energy. 2014; 33: 13-19
- Normal fetal growth assessment: a review of literature and current practice.J Diagn Med Sonogr. 1995; 11: 176-187https://doi.org/10.1177/875647939501100403
- Fetal size and dating: charts recommended for clinical obstetric practice.Ultrasound. 2009; 17: 160-166https://doi.org/10.1179/174313409X448543
- Deep learning strategies for ultrasound in pregnancy.Eur Med J Reprod Heal. 2020; 6: 73-80
- Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.IEEE Trans Med Imaging. 2014; 33: 797-813
GE Versana Club - SonoBiometry n.d. https://www.versanaclub.net/emea/sono-biometry (accessed August 31, 2020).
- Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer.Radiother Oncol. 2021; 159: 231-240
- The promise of artificial intelligence and deep learning in PET and SPECT imaging.Phys Med. 2021; 83: 122-137
- COLI-NET: Fully Automated COVID-19 Lung and Infection Pneumonia Lesion Detection and Segmentation from Chest CT Images.MedRxiv. 2021;
- Fully automated gross tumour volume delineation from PET in head and neck cancer using deep learning algorithms.Clin Nucl Med. 2021;
- U-Net: Convolutional Networks for Biomedical Image Segmentation.Int Conf Med image Comput Comput Interv, Springer. 2015; : 234-241https://doi.org/10.1007/978-3-319-24574-4_28
- Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation.ArXiv Prepr ArXiv180206955. 2018;
- Recurrent convolutional neural network for object recognition.Proc IEEE Conf Comput Vis pattern Recognit. 2015; : 3367-3375
- Attention u-net: Learning where to look for the pancreas.ArXiv Prepr ArXiv180403999. 2018;
Lee J. Image_Segmentation 2018. https://github.com/LeeJunHyun/Image_Segmentation.
- MFP-Unet: A novel deep learning based approach for left ventricle segmentation in echocardiography.Phys Med. 2019; 67: 58-69https://doi.org/10.1016/j.ejmp.2019.10.001
- Feature Pyramid Networks for Object Detection.CVPR. 2017; : 2117-2125
- Automated measurement of fetal head circumference.PLoS One. 2018; 13e0200412https://doi.org/10.5281/ZENODO.1322001
- Circle detection using Hough transform filters.Image Process its Appl. 1995; : 370-374
- Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning.in: Annu Int Conf IEEE Eng Med Biol Soc. Institute of Electrical and Electronics Engineers (IEEE), 2019: 6545-6548https://doi.org/10.1109/embc.2019.8856981
Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In 2017 IEEE Vis Commun Image Process VCIP 2017, vol. 2018- Janua, Institute of Electrical and Electronics Engineers Inc.; 2018, p. 1–4. doi:10.1109/VCIP.2017.8305148.
Sinclair M, Baumgartner CF, Matthew J, Bai W, Martinez JC, Li Y, et al. Human-level Performance on Automatic Head Biometrics in Fetal Ultrasound Using Fully Convolutional Neural Networks. In Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS, vol. 2018- July, Institute of Electrical and Electronics Engineers Inc.; 2018, p. 714–7. doi:10.1109/EMBC.2018.8512278.
- Fully convolutional networks for semantic segmentation.IEEE Conf Comput Vis pattern Recognit. 2015; : 3431-3440
Irene K, Yudha P. A, Haidi H, Faza N, Chandra W. Fetal Head and Abdomen Measurement Using Convolutional Neural Network, Hough Transform, and Difference of Gaussian Revolved along Elliptical Path (Dogell) Algorithm. ArXiv Prepr ArXiv191106298 2019.
- You only look once: unified, real-time object detection.IEEE Conf Comput Vis Pattern Recognit. 2016; : 779-788
- Difference of Gaussians revolved along elliptical paths for ultrasound fetal head segmentation.Comput Med Imaging Graph. 2014; 38: 774-784https://doi.org/10.1016/j.compmedimag.2014.09.006
- Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.IEEE Trans Med Imaging. 2008; 27: 1342-1355https://doi.org/10.1109/TMI.2008.928917
- Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering.Proc IEEE Int Conf Comput Vis. 2005; II: 1589-1596https://doi.org/10.1109/ICCV.2005.194
Rahmatullah R, Ma’Sum MA, Aprinaldi, Mursanto P, Wiweko B. Automatic fetal organs segmentation using multilayer super pixel and image moment feature. In Proc - ICACSIS 2014 2014 Int Conf Adv Comput Sci Inf Syst, Institute of Electrical and Electronics Engineers Inc.; 2014, p. 420–6. doi:10.1109/ICACSIS.2014.7065883.
- Attention gated networks: learning to leverage salient regions in medical images.Med Image Anal. 2019; 53: 197-207https://doi.org/10.1016/j.media.2019.01.012
- An introduction to digital image processing.Prentice-Hall Englewood Cliffs. 1986;
- Numerically stable direct least squares fitting of ellipses.in: 6th Int Conf Cent Eur Comput Graph Vis WSCG. 1998: 125-132
- Direct least square fitting of ellipses.IEEE Trans Pattern Anal Mach Intell. 1999; 21: 476-480
- Measures of the amount of ecologic association between species.Ecology. 1945; 26: 297-302https://doi.org/10.2307/1932409
Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, et al. Comparison and Evaluation of Segmentation Techniques for Subcortical Structures in Brain MRI. Med Image Comput Comput Interv – MICCAI 2008, Springer, Berlin, Heidelberg; 2008, p. 409–16. doi:10.1007/978-3-540-85988-8_49.
- Performance measure characterization for evaluating neuroimage segmentation algorithms.Neuroimage. 2009; 47: 122-135https://doi.org/10.1016/j.neuroimage.2009.03.068
- Evaluation framework for algorithms segmenting short axis cardiac MRI.MIDAS J-Cardiac MR Left Vent Segmentation Chall. 2009; 49
- Statistical methods for assessing agreement between two methods of clinical measurement.Int J Nurs Stud. 2010; 47: 931-936https://doi.org/10.1016/j.ijnurstu.2009.10.001
- Selecting and interpreting measures of thematic classification accuracy.Remote Sens Environ. 1997; 62: 77-89
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. ArXiv Prepr ArXiv151107122 2016.
- Pitfalls in femur length measurements.J Ultrasound Med. 1987; 6: 203-207
- Improved segmentation of ultrasound images for fetal biometry using morphological operators..in: Proc 31st Annu Int Conf IEEE Eng Med Biol Soc Eng Futur Biomed EMBC 2009. IEEE Computer Society, 2009: 459-462https://doi.org/10.1109/IEMBS.2009.5334470
Ciurte A, Bresson X, Cuadra MB. A semi-supervised patch-based approach for segmentation of fetal ultrasound imaging. Chall US Biometric Meas from Fetal Ultrasound Images, ISBI 2012, 2012, p. 5–7.
Stebbing R V, McManigle, John E. A boundary fragment model for head segmentation in fetal ultrasound. Chall US Biometric Meas from Fetal Ultrasound Images, ISBI, 2012, p. 9–11.
Sun C. Automatic fetal head measurements from ultrasound images using circular shortest paths. Chall US Biometric Meas from Fetal Ultrasound Images, ISBI 2012, 2012, p. 13–5.
Ponomarev G V, Gelfand MS, Kazanov MD. A multilevel thresholding combined with edge detection and shape-based recognition for segmentation of fetal ultrasound images. Chall US biometric Meas from fetal ultrasound images, ISBI, 2012, p. 17–9.