Advertisement

A novel phantom with dia- and paramagnetic substructure for quantitative susceptibility mapping and relaxometry

  • Julian Emmerich
    Affiliations
    Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
    Search for articles by this author
  • Peter Bachert
    Affiliations
    Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
    Search for articles by this author
  • Mark E. Ladd
    Affiliations
    Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany

    Faculty of Medicine, Heidelberg University, Heidelberg, Germany
    Search for articles by this author
  • Sina Straub
    Correspondence
    Corresponding author at: Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
    Affiliations
    Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
    Search for articles by this author

      Highlights

      • In biological tissue, paramagnetic and diamagnetic inclusions often occur co-located.
      • Especially in in vivo applications, a separation would be desirable.
      • A dedicated phantom with isotropic dia- and paramagnetic substructure is presented.
      • Measured susceptibility values and relaxation rates are compared with theoretical values.
      • The proposed phantom allows for the validation of QSM and source separation algorithms.

      Abstract

      Purpose

      A phantom is presented in this study that allows for an experimental evaluation of QSM reconstruction algorithms. The phantom contains susceptibility producing particles with dia- and paramagnetic properties embedded in an MRI visible medium and is suitable to assess the performance of algorithms that attempt to separate isotropic dia- and paramagnetic susceptibility at the sub-voxel level.

      Methods

      The phantom was built from calcium carbonate (diamagnetic) and tungsten carbide particles (paramagnetic) embedded in gelatin and surrounded by agarose gel. Different mass fractions and mixing ratios of both susceptibility sources were used. Gradient echo data were acquired at 1.5 T, 3 T and 7 T. Susceptibility maps were calculated using the MEDI toolbox and relaxation rates Δ R 2 were determined using exponential fitting.

      Results

      Relaxation rates as well as susceptibility values generally coincide with the theoretical values for particles fulfilling the assumptions of the the static dephasing regime with stronger deviations for relaxation rates at higher field strength and for high susceptibility values. MRI raw data are available for free academic use as supplementary material.

      Conclusions

      In this study, a susceptibility phantom is presented that might find its application in the development and quantitative validation of current and future QSM reconstruction algorithms which aim to separate the influence of isotropic dia- and paramagnetic substructure in quantitative susceptibility mapping.

      Keywords

      Abbreviations:

      QSM (quantitative susceptibility mapping), VOI (volume of interest), CaCO3 (calcium carbonate), WC (tungsten carbide)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Young I.R.
        • Khenia S.
        • Thomas D.G.T.
        • Davis C.H.
        • Gadian D.G.
        • Cox I.J.
        • et al.
        Clinical magnetic susceptibility mapping of the brain.
        J Comput Assist Tomogr. 1987; 11: 2-6
        • Liu T.
        • Spincemaille P.
        • de Rochefort L.
        • Kressler B.
        • Wang Y.i.
        Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.
        Magn Reson Med. 2009; 61: 196-204
        • Schweser F.
        • et al.
        Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?.
        Neuroimage. 2011; 54: 2789-2807
        • Liu J.
        • Liu T.
        • de Rochefort L.
        • Ledoux J.
        • Khalidov I.
        • Chen W.
        • et al.
        Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map.
        Neuroimage. 2012; 59: 2560-2568
        • Shmueli K.
        • de Zwart J.A.
        • van Gelderen P.
        • Li T.-Q.
        • Dodd S.J.
        • Duyn J.H.
        Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data.
        Magn Reson Med. 2009; 62: 1510-1522
        • Wharton S.
        • Schäfer A.
        • Bowtell R.
        Susceptibility mapping in the human brain using threshold-based k-space division.
        Magn Reson Med. 2010; 63: 1292-1304
        • Liu T.
        • Liu J.
        • de Rochefort L.
        • Spincemaille P.
        • Khalidov I.
        • Ledoux J.R.
        • et al.
        Morphology Enabled Dipole Inversion (MEDI) from a Single-Angle Acquisition: Comparison with COSMOS in Human Brain Imaging.
        Magn Reson Med. 2011; 66: 777-783
        • Wharton S.
        • Bowtell R.
        Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods.
        Neuroimage. 2010; 53: 515-525
        • de Rochefort L.
        • Liu T.
        • Kressler B.
        • Liu J.
        • Spincemaille P.
        • Lebon V.
        • et al.
        Quantitative Susceptibility Map Reconstruction from MR Phase Data Using Bayesian Regularization: Validation and Application to Brain Imaging.
        Magn Reson Med. 2010; 63: 194-206
        • Wang Y.
        • et al.
        Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care.
        Journal of magnetic resonance imaging : JMRI. 2017; 46: 951-971
        • Chen W.
        • Gauthier S.A.
        • Gupta A.
        • Comunale J.
        • Liu T.
        • Wang S.
        • et al.
        Quantitative susceptibility mapping of multiple sclerosis lesions at various ages.
        Radiology. 2014; 271: 183-192
        • Sharma S.D.
        • Fischer R.
        • Schoennagel B.P.
        • Nielsen P.
        • Kooijman H.
        • Yamamura J.
        • et al.
        MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry.
        Magn Reson Med. 2017; 78: 264-270
        • Wang Y.
        • Liu T.
        Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker.
        Magn Reson Med. 2015; 73: 82-101
        • Kim J.-H.
        • Kim J.-H.
        • Lee S.-H.
        • Park J.
        • Lee S.-K.
        • Deniz C.M.
        Fabrication of a spherical inclusion phantom for validation of magnetic resonance-based magnetic susceptibility imaging.
        PLoS ONE. 2019; 14: e0220639https://doi.org/10.1371/journal.pone.0220639
        • Olsson E.
        • Wirestam R.
        • Lind E.
        MRI-Based Quantification of Magnetic Susceptibility in Gel Phantoms: Assessment of Measurement and Calculation Accuracy.
        Radiol Res Pract. 2018; 2018: 6709525
        • Zhou D.
        • Cho J.
        • Zhang J.
        • Spincemaille P.
        • Wang Y.i.
        Susceptibility underestimation in a high-susceptibility phantom: Dependence on imaging resolution, magnitude contrast, and other parameters.
        Magn Reson Med. 2017; 78: 1080-1086
        • Stüber C.
        • Morawski M.
        • Schäfer A.
        • Labadie C.
        • Wähnert M.
        • Leuze C.
        • et al.
        Myelin and iron concentration in the human brain: a quantitative study of MRI contrast.
        Neuroimage. 2014; 93: 95-106
        • Haacke E.M.
        • Cheng N.Y.C.
        • House M.J.
        • Liu Q.
        • Neelavalli J.
        • Ogg R.J.
        • et al.
        Imaging iron stores in the brain using magnetic resonance imaging.
        Magn Reson Imaging. 2005; 23: 1-25
        • Lee J.
        • Shmueli K.
        • Kang B.-T.
        • Yao B.
        • Fukunaga M.
        • van Gelderen P.
        • et al.
        The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain.
        Neuroimage. 2012; 59: 3967-3975
        • Straub S.
        • Laun F.B.
        • Emmerich J.
        • Jobke B.
        • Hauswald H.
        • Katayama S.
        • et al.
        Potential of quantitative susceptibility mapping for detection of prostatic calcifications.
        J Magn Reson Imaging. 2017; 45: 889-898
      1. der, N.A.S., Ergebnisse der Exakten Naturwissenschaften: Zweiter Band. 2013: Springer Berlin Heidelberg.

        • Lee J.
        • et al.
        Separating positive and negative susceptibility sources in QSM.
        Proc. Intl. Soc. Magn. Reson. Med. 2017; 25
        • Kuchel P.W.
        • Chapman B.E.
        • Bubb W.A.
        • Hansen P.E.
        • Durrant C.J.
        • Hertzberg M.P.
        Magnetic susceptibility: Solutions, emulsions, and cells.
        Concepts in Magnetic Resonance Part A. 2003; 18A: 56-71
        • Robinson S.D.
        • et al.
        An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping.
        NMR Biomed. 2017; 30e3601
        • Bakker C.J.G.
        • de Leeuw H.
        • Seevinck P.R.
        Selective depiction of susceptibility transitions using Laplace-filtered phase maps.
        Magn Reson Imaging. 2012; 30: 601-609
        • Schweser F.
        • et al.
        An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest.
        NMR Biomed. 2017; 30
        • Yablonskiy D.A.
        • Haacke E.M.
        Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime.
        Magn Reson Med. 1994; 32: 749-763
        • Buschle L.R.
        • Ziener C.H.
        • Zhang K.e.
        • Sturm V.J.F.
        • Kampf T.
        • Hahn A.
        • et al.
        Vessel radius mapping in an extended model of transverse relaxation.
        MAGMA. 2018; 31: 531-551
        • Bauer W.R.
        • Nadler W.
        • Bock M.
        • Schad L.R.
        • Wacker C.
        • Hartlep A.
        • et al.
        Theory of the BOLD effect in the capillary region: an analytical approach for the determination of T2 in the capillary network of myocardium.
        Magn Reson Med. 1999; 41: 51-62
        • Buschle L.R.
        • Kurz F.T.
        • Kampf T.
        • Triphan S.M.F.
        • Schlemmer H.-P.
        • Ziener C.H.
        Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
        Magn Reson Imaging. 2015; 33: 1126-1145
        • Kiselev V.G.
        • Posse S.
        Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network.
        Magn Reson Med. 1999; 41: 499-509
        • Kiselev V.G.
        • Strecker R.
        • Ziyeh S.
        • Speck O.
        • Hennig J.
        Vessel size imaging in humans.
        Magn Reson Med. 2005; 53: 553-563
        • Emmerich J.
        • Bachert P.
        • Ladd M.E.
        • Straub S.
        On the influence of two coexisting species of susceptibility-producing structures on the R2∗ relaxation rate.
        Magn Reson Imaging. 2020; 71: 170-177
        • Weast R.C.
        • Astle M.J.
        • Beyer W.H.
        CRC Handbook of Chemistry and Physics.
        CRC Press Boca Raton, FL1988
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • et al.
        Fiji: an open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682
        • Eckstein K.
        • Dymerska B.
        • Bachrata B.
        • Bogner W.
        • Poljanc K.
        • Trattnig S.
        • et al.
        Computationally Efficient Combination of Multi-channel Phase Data From Multi-echo Acquisitions (ASPIRE).
        Magn Reson Med. 2018; 79: 2996-3006
        • Pei M.
        • Nguyen T.D.
        • Thimmappa N.D.
        • Salustri C.
        • Dong F.
        • Cooper M.A.
        • et al.
        Algorithm for fast monoexponential fitting based on Auto-Regression on Linear Operations (ARLO) of data.
        Magn Reson Med. 2015; 73: 843-850
        • Li W.
        • Wu B.
        • Liu C.
        Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition.
        Neuroimage. 2011; 55: 1645-1656
        • Li W.
        • Avram A.V.
        • Wu B.
        • Xiao X.
        • Liu C.
        Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping.
        NMR Biomed. 2014; 27: 219-227
        • Wu B.
        • Li W.
        • Guidon A.
        • Liu C.
        Whole brain susceptibility mapping using compressed sensing.
        Magn Reson Med. 2012; 67: 137-147
        • Wolf I.
        • Vetter M.
        • Wegner I.
        • Böttger T.
        • Nolden M.
        • Schöbinger M.
        • et al.
        The medical imaging interaction toolkit.
        Med Image Anal. 2005; 9: 594-604
      2. Schweser, F., et al. SEMI-TWInS : Simultaneous Extraction of Myelin and Iron using a T 2 *-Weighted Imaging Sequence. 2010.

        • Taege Y.
        • Hagemeier J.
        • Bergsland N.
        • Dwyer M.G.
        • Weinstock-Guttman B.
        • Zivadinov R.
        • et al.
        Assessment of mesoscopic properties of deep gray matter iron through a model-based simultaneous analysis of magnetic susceptibility and R2* – A pilot study in patients with multiple sclerosis and normal controls.
        NeuroImage. 2019; 186: 308-320
        • Langkammer C.
        • Schweser F.
        • Shmueli K.
        • Kames C.
        • Li X.u.
        • Guo L.i.
        • et al.
        Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge.
        Magn Reson Med. 2018; 79: 1661-1673
        • Langkammer C.
        • Schweser F.
        • Krebs N.
        • Deistung A.
        • Goessler W.
        • Scheurer E.
        • et al.
        Quantitative susceptibility mapping (QSM) as a means to measure brain iron?.
        A post mortem validation study. Neuroimage. 2012; 62: 1593-1599
        • Bhatnagar S.S.
        • Verma M.R.
        • Anwar-ul-Haq M.
        Teilchengröße und magnetische Suszeptibilität.
        Kolloid-Zeitschrift. 1937; 78: 9-18
        • Nunes D.
        • Cruz T.L.
        • Jespersen S.N.
        • Shemesh N.
        Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
        J Magn Reson. 2017; 277: 117-130
        • Wharton S.
        • Bowtell R.
        Gradient echo based fiber orientation mapping using R2*and frequency difference measurements.
        Neuroimage. 2013; 83: 1011-1023
        • Ito K.
        • Kadoya N.
        • Nakajima Y.
        • Saito M.
        • Sato K.
        • Nagasaka T.
        • et al.
        Feasibility of a direct-conversion method from magnetic susceptibility to relative electron density for radiation therapy treatment planning.
        International Journal of Medical Physics, Clinical Engineering and Radiation Oncology. 2017; 06: 252-265
        • Nosrati R.
        • Soliman A.
        • Safigholi H.
        • Hashemi M.
        • Wronski M.
        • Morton G.
        • et al.
        MRI-based automated detection of implanted low dose rate (LDR) brachytherapy seeds using quantitative susceptibility mapping (QSM) and unsupervised machine learning (ML).
        Radiother Oncol. 2018; 129: 540-547
        • Nosrati R.
        • Wronski M.
        • Tseng C.-L.
        • Chung H.
        • Pejović-Milić A.
        • Morton G.
        • et al.
        Postimplant Dosimetry of Permanent Prostate Brachytherapy: Comparison of MRI-Only and CT-MRI Fusion-Based Workflows.
        Int J Radiat Oncol Biol Phys. 2020; 106: 206-215
        • Emmerich J.
        • Bachert P.
        • Ladd M.E.
        • Straub S.
        On the separation of susceptibility sources in quantitative susceptibility mapping: theory and phantom validation with an in vivo application to multiple sclerosis lesions of different age.
        J Magnetic Res. 2021; 107033https://doi.org/10.1016/j.jmr.2021.107033