Advertisement

Prompt-gamma emission in GEANT4 revisited and confronted with experiment

      Highlights

      • Prompt-gamma emission in proton therapy is investigated.
      • Results of experiments on phantoms are shown along with Geant4 simulations.
      • Several Geant4 versions and physics lists are tested.
      • None of the configurations is able to fully reproduce the experimental data.
      • It is not the most recent Geant4 version which gives the best agreement with data.

      Abstract

      Purpose

      The field of online monitoring of the beam range is one of the most researched topics in proton therapy over the last decade. The development of detectors that can be used for beam range verification under clinical conditions is a challenging task. One promising possible solution are modalities that record prompt-gamma radiation produced by the interactions of the proton beam with the target tissue. A good understanding of the energy spectra of the prompt gammas and the yields in certain energy regions is crucial for a successful design of a prompt-gamma detector. Monte-Carlo simulations are an important tool in development and testing of detector concepts, thus the proper modelling of the prompt-gamma emission in those simulations are of vital importance. In this paper, we confront a number of GEANT4 simulations of prompt-gamma emission, performed with different versions of the package and different physics lists, with experimental data obtained from a phantom irradiation with proton beams of four different energies in the range 70–230 MeV.

      Methods

      The comparison is made on different levels: features of the prompt-gamma energy spectrum, gamma emission depth profiles for discrete transitions and the width of the distal fall-off in those profiles.

      Results

      The best agreement between the measurements and the simulations is found for the GEANT4 version 10.4.2 and the reference physics list QGSP_BIC_HP.

      Conclusions

      Modifications to prompt-gamma emission modelling in higher versions of the software increase the discrepancy between the simulation results and the experimental data.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Wrońska A, Dauvergne D. In: Radiation detection systems, vol. 2. Ed. by Iniewski K, Iwańczyk J. preprint at https://hal.archives-ouvertes.fr/hal-03085504/document.CRCPress/Routledge; 2021. Chap. 6.

      2. NuPECC report 2014: Nuclear Physics for Medicine. http://www.nupecc.org/pub/npmed2014.pdf. Accessed: 2021-07-13.

        • Liu C.C.
        • Huang H.M.
        A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
        Phys Med. 2020; 69: 110-119https://doi.org/10.1016/j.ejmp.2019.12.006
        • Richter C.
        • Pausch G.
        • Barczyk S.
        • et al.
        First clinical application of a prompt gamma based in vivo proton range verification system.
        Radiother Oncol. 2016; 118: 232-237https://doi.org/10.1016/j.radonc.2016.01.004
        • Hueso-González F.
        • Rabe M.
        • Ruggieri T.A.
        • Bortfeld T.
        • Verburg J.M.
        A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy.
        Phys Med Biol. 2018; 63185019https://doi.org/10.1088/1361-6560/aad513
        • Ferrero V.
        • Fiorina E.
        • Morrocchi M.
        • et al.
        Online proton therapy monitoring: clinical test of a Silicon-photodetector-based in-beam PET.
        Sci Rep. 2018; 8: 4100https://doi.org/10.1038/s41598-018-22325-6
        • Draeger E.
        • Mackin D.
        • Peterson S.
        • et al.
        3D prompt gamma imaging for proton beam range verification.
        Phys Med Biol. 2018; 63035019https://doi.org/10.1088/1361-6560/aaa203
        • Krimmer J.
        Development of a Compton camera for medical applications based on silicon strip and scintillation detectors.
        Nucl Instrum Methods Phys Res A. 2015; 787: 98-101https://doi.org/10.1016/j.nima.2014.11.042
        • Solevi P.
        Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.
        Phys Med Biol. 2016; 61: 5149-5165https://doi.org/10.1088/0031-9155/61/14/5149
        • Gutierrez A.
        • Baker C.
        • Boston H.
        • et al.
        Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification.
        J Instrum. 2018; 13: C01036https://doi.org/10.1088/1748-0221/13/01/C01036
        • Cambraia Lopes P.
        • Crespo P.
        • Simões H.
        • Ferreira Marques R.
        • Parodi K.
        • Schaart D.R.
        Simulation of proton range monitoring in an anthropomorphic phantom using multi-slat collimators and time-of-flight detection of prompt-gamma quanta.
        Phys Med. 2018; 54: 1-14https://doi.org/10.1016/J.EJMP.2018.09.001
        • Wrońska A.
        • Hetzel R.
        • Kasper J.
        • et al.
        Characterization of components of a scintillation-fiber-based Compton Camera.
        Acta Phys Pol B. 2020; 51: 17-25https://doi.org/10.5506/APhysPolB.51.17
        • Zarifi M.
        • Guatelli S.
        • Qi Y.
        • Bolst D.
        • Prokopovich D.
        • Rosenfeld A.
        Characterization of prompt gamma ray emission for in vivo range verification in particle therapy: A simulation study.
        Phys Med. 2019; 62: 20-32https://doi.org/10.1016/J.EJMP.2019.04.023
        • Verburg J.M.
        • Shih H.A.
        • Seco J.
        Simulation of prompt gamma-ray emission during proton radiotherapy.
        Phys Med Biol. 2012; 17: 5459-5472https://doi.org/10.1088/0031-9155/57/17/5459
      3. Werner CJ (editor). MCNP Users Manual - Code Version 6.2. LA-UR-17-29981: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-17-29981.pdf. Accessed: 2021-07-13. 2017.

      4. The TALYS package. https://tendl.web.psi.ch/tendl_2019/talys.html. Accessed: 2021-07-13.

        • Herman M.
        • Capote R.
        • Carlson B.
        • et al.
        EMPIRE: Nuclear reaction model code system for data evaluation.
        Nucl Data Sheets. 2007; 108: 2655https://doi.org/10.1016/j.nds.2007.11.003
        • Battistoni G.
        • Bauer J.
        • Boehlen T.T.
        • et al.
        The FLUKA code: An accurate simulation tool for particle therapy.
        Front Oncol. MAY 2016; 6: 11https://doi.org/10.3389/fonc.2016.00116
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • et al.
        Recent developments in GEANT4.
        Nucl Instrum Methods Phys Res A. 2016; 835: 186-225https://doi.org/10.1016/j.nima.2016.06.125
        • Incerti S.
        • Brown J.M.
        • Guatelli S.
        Advances in Geant4 applications in medicine.
        Phys Med. 2020; 70: 224-227https://doi.org/10.1016/J.EJMP.2020.01.019
        • Golnik C.
        • Hueso-González F.
        • Müller A.
        • et al.
        Range assessment in particle therapy based on prompt -ray timing measurements.
        Phys Med Biol. 2014; 59: 5399-5422https://doi.org/10.1088/0031-9155/59/18/5399
        • Nenoff L.
        • Priegnitz M.
        • Janssens G.
        • et al.
        Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton treatment verification.
        Radiother Oncol. 2017; 125: 534-540https://doi.org/10.1016/j.radonc.2017.10.013
        • Kohlhase N.
        • Wegener T.
        • Schaar M.
        • et al.
        Capability of MLEM and OE to detect range shifts with a compton camera in particle therapy.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 233-242https://doi.org/10.1109/TRPMS.2019.2937675
        • Pinto M.
        • Bajard M.
        • Brons S.
        • et al.
        Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring.
        Phys Med Biol. 2014; 59: 1747-1772https://doi.org/10.1088/0031-9155/59/7/1747
        • Pinto M.
        • Dauvergne D.
        • Freud N.
        • Krimmer J.
        • Létang J.M.
        • Testa E.
        Assessment of Geant4 prompt-gamma emission yields in the context of proton therapy monitoring.
        Front Oncol. 2016; 6: 10https://doi.org/10.3389/fonc.2016.00010
      5. Vanstalle M, Mattei I, Sarti A, et al. Benchmarking Geant4 hadronic models for prompt- monitoring in carbon ion therapy. Med Phys 2017;8(44):4276–86. doi: 10.1002/mp.12348.

      6. Physics Reference Manual, Release 10.7. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf. Accessed: 2021-07-13.

        • Kelleter L.
        • Wrońska A.
        • Besuglow J.
        • et al.
        Spectroscopic study of promptgamma emission for range verification in proton therapy.
        PhysMed. 2017; 34: 7-17https://doi.org/10.1016/j.ejmp.2017.01.003
        • Tessonnier T.
        • Marcelos T.
        • Mairani A.
        • Brons S.
        • Parodi K.
        Phase Space Generation for Proton and Carbon Ion Beams for External Users’ Applications at the Heidelberg Ion Therapy Center.
        Front Oncol. 2016; 5: 297https://doi.org/10.3389/fonc.2015.00297
      7. Eickhoff H, Dr. Weinrich U, and Alonso J. Design Criteria for Medical Accelerators. In: Ion beam therapy: Fundamentals, technology, clinical applications. Ed. by Linz U. Springer, 2012:325–43.

        • Schumann A.
        • Petzoldt J.
        • Dendooven P.
        • et al.
        Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.
        Phys Med Biol. 2015; 60: 4197-4207https://doi.org/10.1088/0031-9155/60/10/4197
      8. Guide For Physics Lists, Release 10.7. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/fo/PhysicsListGuide.pdf. Accessed: 2021-07-13.

        • Zacharatou Jarlskog C.
        • Paganetti H.
        Physics settings for using the Geant4 toolkit in proton therapy.
        IEEE Trans Nucl Sci. 2008; 55: 1018-1025https://doi.org/10.1109/TNS.2008.922816
      9. Cirrone G. Hadrontherapy example. https://twiki.cern.ch/twiki/bin/view/Geant4/AdvancedExamplesHadrontherapy. Accessed: 2021-07-13.

      10. Guide For Physics Lists, Release 10.4. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/BackupVersions/V10.4/fo/PhysicsListGuide.pdf. Accessed: 2021-07-13.

      11. Guide For Physics Lists, Release 10.5. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/BackupVersions/V10.5-2.0/fo/PhysicsListGuide.pdf. Accessed: 2021-07-13.

      12. Guide for physics lists, Release 10.6. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/BackupVersions/V10.6c/fo/PhysicsListGuide.pdf. Accessed: 2021-07-13.

      13. Rose PF. ENDF-201: ENDF/B-VI summary documentation. 1991. doi:10.2172/10132931. url: https://www.osti.gov/biblio/10132931.

      14. Koning A, Rochman D, Sublet JC, Dzysiuk N, Fleming M, and van der Marck S. TENDL: Complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 2019;155. Special Issue on Nuclear Reaction Data:1–55. doi: 10.1016/j.nds.2019.01.002.

        • Rusiecka K.
        • Wrońska A.
        • Magiera A.
        • et al.
        Shape of the spectral line and gamma angular distribution of the 12C(p, p’4.44)12C reaction.
        Acta Phys Pol B. 2018; 49: 1637-1652https://doi.org/10.5506/APhysPolB.49.1637
      15. NDS IAEA Interactive chart of nuclides. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html. Accessed: 2021-07-13.