Advertisement

An empirical method for splitting arcs in VMAT

      Highlights

      • The core findings from our study are:
      • Presents new prior knowledge based method to determine the optimal split arc in VMAT.
      • Fast and effective approach to improve the Plan quality for VMAT.
      • The proposed split arc VMAT strategy is shown to reduce the dose to the OARs.
      • Low dose volume, beam on time and monitor units are reduced by proposed split arc strategy.

      Abstract

      Purpose

      We present a new approach to determine the optimal arc split for VMAT beams which is an extension of our recently published algorithm for selecting optimal beam angles in Intensity Modulated Radiation Therapy (IMRT)

      Material and Methods

      The proposed approach uses an objective function based scoring method called “ ψ – score” to determine optimal arc splitting strategy. To validate our approach, we applied it in different clinical cases: Abdomen-Para aortic node, Lung, Pancreas and Prostate. Basically, for all clinical cases, two set of plans were created, namely VMAT plan and VMAT_S plan using Pinnacle3 (V16.2, Philips Medical Systems (Cleveland), Inc.). In the VMAT plans, full arc (360°) with 4-degree gantry spacing was used during optimization to compute the “ ψ – score”. Subsequently the avoidable arc portions were identified and removed using the ψ – score plot followed by the final optimization (VMAT_S).

      Results

      Equivalent or better OAR sparing, and similar target coverage were achieved in VMAT_S plans compared to VMAT plans. VMAT_S reduced the number of control points and monitor units by 24.2% and 12.9% respectively. On the average, beam on time was reduced by 21.9% and low dose volume (5 Gy isodose volume) to healthy tissues was reduced by 4.9% in VMAT_S compared to VMAT plans.

      Conclusion

      The results demonstrated that the proposed method is useful for reducing the monitor units, beam on time and low dose volume without significantly compromising plan quality and most useful for non-centrically located targets.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Otto K.
        Volumetric modulated arc therapy: IMRT in a single gantry arc.
        Med Phys. 2008; 35: 310-317https://doi.org/10.1118/1.2818738
        • Yoo S.
        • Wu Q.J.
        • Lee W.R.
        • Yin F.-F.
        Radiotherapy treatment plans with rapidarc for prostate cancer involving seminal vesicles and lymph nodes.
        Int J Radiat Oncol Biol Phys. 2010; 76: 935-942https://doi.org/10.1016/j.ijrobp.2009.07.1677
        • Matuszak M.M.
        • Yan D.i.
        • Grills I.
        • Martinez A.
        Clinical applications of volumetric modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2010; 77: 608-616https://doi.org/10.1016/j.ijrobp.2009.08.032
        • Teoh M.
        • Clark C.H.
        • Wood K.
        • Whitaker S.
        • Nisbet A.
        Volumetric modulated arc therapy: a review of current literature and clinical use in practice.
        Br J Radiol. 2011; 84: 967-996https://doi.org/10.1259/bjr/22373346
        • Palma D.
        • Vollans E.
        • James K.
        • Nakano S.
        • Moiseenko V.
        • Shaffer R.
        • et al.
        Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy.
        Int J Radiat Oncol Biol Phys. 2008; 72: 996-1001https://doi.org/10.1016/j.ijrobp.2008.02.047
        • Cozzi L.
        • Dinshaw K.A.
        • Shrivastava S.K.
        • Mahantshetty U.
        • Engineer R.
        • Deshpande D.D.
        • et al.
        A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy.
        Radiother Oncol. 2008; 89: 180-191https://doi.org/10.1016/j.radonc.2008.06.013
        • Johnston M.
        • Clifford S.
        • Bromley R.
        • Back M.
        • Oliver L.
        • Eade T.
        Volumetric-modulated arc therapy in head and neck radiotherapy: a Planning comparison using simultaneous integrated boost for nasopharynx and oropharynx carcinoma.
        Clin Oncol. 2011; 23: 503-511https://doi.org/10.1016/j.clon.2011.02.002
        • Clivio A.
        • Fogliata A.
        • Franzetti-Pellanda A.
        • Nicolini G.
        • Vanetti E.
        • Wyttenbach R.
        • et al.
        Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: a treatment planning comparison with fixed field IMRT.
        Radiother Oncol. 2009; 92: 118-124https://doi.org/10.1016/j.radonc.2008.12.020
        • Fogliata A.
        • Clivio A.
        • Nicolini G.
        • Vanetti E.
        • Cozzi L.
        Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques.
        Radiother Oncol. 2008; 89: 254-262https://doi.org/10.1016/j.radonc.2008.07.021
        • Ballhausen H.
        • Li M.
        • Ganswindt U.
        • Belka C.
        Shorter treatment times reduce the impact of intra-fractional motion: A real-time 4DUS study comparing VMAT vs. step-and-shoot IMRT for prostate cancerKürzere Behandlungszeit reduziert den Einfluss intrafraktioneller Bewegung: Eine Echtzeit-4DUS-Studie vergleicht VMAT vs. Step-and-shoot-IMRT beim Prostatakarzinom.
        Strahlentherapie Und Onkol. 2018; 194: 664-674https://doi.org/10.1007/s00066-018-1286-2
        • Hoogeman M.S.
        • Nuyttens J.J.
        • Levendag P.C.
        • Heijmen B.J.M.
        Time dependence of intrafraction patient motion assessed by repeat stereoscopic imaging.
        Int J Radiat Oncol Biol Phys. 2008; 70: 609-618https://doi.org/10.1016/j.ijrobp.2007.08.066
        • Lee B.
        • Lee S.
        • Sung J.
        • Yoon M.
        Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT.
        J Radiol Prot. 2014; 34: 325-331https://doi.org/10.1088/0952-4746/34/2/325
        • Lazzari G.
        • Terlizzi A.
        • Leo M.G.
        • Silvano G.
        VMAT radiation-induced nausea and vomiting in adjuvant breast cancer radiotherapy: The incidental effect of low-dose bath exposure.
        Clin Transl Radiat Oncol. 2017; 7: 43-48https://doi.org/10.1016/j.ctro.2017.09.009
        • Dumane V.A.
        • Saksornchai K.
        • Zhou Y.
        • Hong L.
        • Powell S.
        • Ho A.Y.
        Reduction in low-dose to normal tissue with the addition of deep inspiration breath hold (DIBH) to volumetric modulated arc therapy (VMAT) in breast cancer patients with implant reconstruction receiving regional nodal irradiation.
        Radiat Oncol. 2018; 13: 1-7https://doi.org/10.1186/s13014-018-1132-9
        • Zhang Q.
        • Liu J.
        • Ao N.
        • Yu H.
        • Peng Y.
        • Ou L.
        • et al.
        Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques.
        Sci Rep. 2020; 10: 1-12https://doi.org/10.1038/s41598-020-58134-z
        • Hall E.J.
        • Wuu C.-S.
        Radiation-induced second cancers: the impact of 3D-CRT and IMRT.
        Int J Radiat Oncol Biol Phys. 2003; 56: 83-88https://doi.org/10.1016/S0360-3016(03)00073-7
        • Sakthivel V.
        • Kadirampatti Mani G.
        • Mani S.
        • Boopathy R.
        • Selvaraj J.
        Estimating second malignancy risk in intensity-modulated radiotherapy and volumetric-modulated arc therapy using a mechanistic radiobiological model in radiotherapy for carcinoma of left breast.
        J Med Phys. 2017; 42: 234-240https://doi.org/10.4103/jmp.JMP_89_17
        • Huang L.
        • Zhuang T.
        • Mastroianni A.
        • Djemil T.
        • Cui T.
        • Xia P.
        Impact of small MU/segment and dose rate on delivery accuracy of volumetric-modulated arc therapy (VMAT).
        J Appl Clin Med Phys. 2016; 17: 203-210https://doi.org/10.1120/jacmp.v17i3.6046
        • Ranganathan V.
        • Maria Das K.J.
        An empirical method for automatic determination of maximum number of segments in DMPO-based IMRT for Head and Neck cases.
        Reports Pract Oncol Radiother. 2016; 21: 571-578https://doi.org/10.1016/j.rpor.2016.09.004
        • Wala J.
        • Salari E.
        • Chen W.
        • Craft D.
        Optimal partial-arcs in VMAT treatment planning.
        Phys Med Biol. 2012; 57: 5861-5874https://doi.org/10.1088/0031-9155/57/18/5861
        • Craft D.
        • McQuaid D.
        • Wala J.
        • Chen W.
        • Salari E.
        • Bortfeld T.
        Multicriteria VMAT optimization.
        Med Phys. 2012; 39: 686-696https://doi.org/10.1118/1.3675601
        • Radhakrishnan S.
        • Chandrasekaran A.
        • Sarma Y.
        • Balakrishnan S.
        • Nandigam J.
        Dosimetric comparison between single and dual arc-volumetric modulated arc radiotherapy and intensity modulated radiotherapy for nasopharyngeal carcinoma using a simultaneous integrated boost technique.
        Asian Pacific J Cancer Prev. 2017; 18: 1395-1402
        • Zhao L.R.
        • Zhou Y.B.
        • Sun J.G.
        Comparison of plan optimization for single and dualvolumetric-modulated arc therapy versus intensity-modulated radiation therapy during post-mastectomy regional irradiation.
        Oncol Lett. 2016; 11: 3389-3394https://doi.org/10.3892/ol.2016.4376
        • Luan S.
        • Wang C.
        • Cao D.
        • Chen D.Z.
        • Shepard D.M.
        • Yu C.X.
        Leaf-sequencing for intensity-modulated arc therapy using graph algorithms.
        Med Phys. 2008; 35: 61-69https://doi.org/10.1118/1.2818731
        • Bertelsen A.
        • Lorenzen E.L.
        • Brink C.
        Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate.
        Med Phys. 2011; 38: 4802-4810https://doi.org/10.1118/1.3615621
        • Nguyen D.
        • Lyu Q.
        • Ruan D.
        • O'Connor D.
        • Low D.A.
        • Sheng K.e.
        A comprehensive formulation for volumetric modulated arc therapy planning.
        Med Phys. 2016; 43: 4263-4272https://doi.org/10.1118/1.4953832
        • Sanford L.
        • Pokhrel D.
        Improving treatment efficiency via photon optimizer (PO) MLC algorithm for synchronous single-isocenter/multiple-lesions VMAT lung SBRT.
        J Appl Clin Med Phys. 2019; 20: 201-207https://doi.org/10.1002/acm2.v20.1010.1002/acm2.12721
        • Rana S.
        • Cheng ChihYao
        Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment.
        Chin J Cancer. 2013; 32: 546-552https://doi.org/10.5732/cjc.013.10077
        • Rangaraj D.
        • Oddiraju S.
        • Sun B.
        • Santanam L.
        • Yang D.
        • Goddu S.
        • et al.
        Fundamental properties of the delivery of volumetric modulated arc therapy (VMAT) to static patient anatomy.
        Med Phys. 2010; 37: 4056-4067https://doi.org/10.1118/1.3453575
        • Miura H.
        • Ozawa S.
        • Nagata Y.
        Efficacy of robust optimization plan with partial-arc VMAT for photon volumetric-modulated arc therapy: a phantom study.
        J Appl Clin Med Phys. 2017; 18: 97-103https://doi.org/10.1002/acm2.12131
        • Lin Y.H.
        • Ozawa S.
        • Miura H.
        • Yogo K.
        • Nakashima T.
        • Miki K.
        • et al.
        Split-VMAT technique to control the expiratory breath-hold time in liver stereotactic body radiation therapy.
        Phys Medica. 2017; 40: 17-23https://doi.org/10.1016/j.ejmp.2017.06.022
        • Boman E.
        • Rossi M.
        • Haltamo M.
        • Skyttä T.
        • Kapanen M.
        A new split arc VMAT technique for lymph node positive breast cancer.
        Phys Medica. 2016; 32: 1428-1436https://doi.org/10.1016/j.ejmp.2016.10.012
        • Ranganathan V.
        • Kumar P.
        • Gipson J.O.E.
        US20180111005A1- method for beam.
        Geometry Selection. 2018;
        • Ramar N.
        • Meher S.R.
        • Ranganathan V.
        • Perumal B.
        • Kumar P.
        • Anto G.J.
        • et al.
        Objective function based ranking method for selection of optimal beam angles in IMRT.
        Phys Medica. 2020; 69: 44-51https://doi.org/10.1016/j.ejmp.2019.11.020
      1. Ranganathan V, Ramar N, Perumal B. WO2020169787A1 - Method to Optimally Splitting Arcs in Modulated Arc Therapy (MAT) Plans 2020.

        • Krishna G.S.
        • Srinivas V.
        • Reddy P.Y.
        Clinical implications of Eclipse analytical anisotropic algorithm and Acuros XB algorithm for the treatment of lung cancer.
        J Med Phys. 2016; 41: 219-223https://doi.org/10.4103/0971-6203.195185
        • Stanley J.
        • Breitman K.
        • Dunscombe P.
        • Spencer D.P.
        • Lau H.
        Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases.
        J Appl Clin Med Phys. 2011; 12: 245-253https://doi.org/10.1120/jacmp.v12i2.3449