Highlights
- •Carbon-ion radiation therapy and photon radiation therapy using IMRT were compared.
- •Carbon-ion radiation therapy showed lower rectal EQD2-converted DVH, EQD3-converted DVH, and NTCP.
- •Both modalities showed comparable rectal toxicity in clinical outcome.
Abstract
Keywords
Introduction
- Takakusagi Y.
- Katoh H.
- Kano K.
- Anno W.
- Tsuchida K.
- Mizoguchi N.
- et al.
- Kawamura H.
- Kubo N.
- Sato H.
- Mizukami T.
- Katoh H.
- Ishikawa H.
- et al.
- Kawamura H.
- Kubo N.
- Sato H.
- Mizukami T.
- Katoh H.
- Ishikawa H.
- et al.
Materials and Methods
Patient selection
Modality | CIRT | IMRT | |
---|---|---|---|
Treatment period | 2010–2011 | 2010–2013 | |
Number of patients | 76 | 76 | |
Age in years (median, range) | 66 (53–88) | 67.5 (45.6–88.0) | |
Follow-up in month (median, range) | 51 (8–58) | 29.1(12.6–53.8) | |
Tumor Stage | |||
1 | 23 | 22 | |
2 | 26 | 30 | |
3a | 24 | 17 | |
3b | 2 | 6 | |
4 | 1 | 1 | |
Gleason Score | |||
5–6 | 4 | 2 | |
7 | 42 | 47 | |
8–10 | 30 | 27 | |
iPSA (ng/ml) | |||
≦10 | 41 | 42 | |
10–20 | 16 | 21 | |
>20 | 19 | 13 | |
Risk levels* | |||
Low | 3 | 1 | |
Intermediate | 30 | 34 | |
High | 43 | 41 | |
Neoadjuvant hormonal therapy | |||
Yes | 69 | 74 | |
No | 7 | 2 | |
Prescription | |||
Dose | 57.6 Gy (RBE) | 63 Gy | |
Normalization | ** | PTV D95% | |
Fraction | 16 | 21 | |
Irradiation Method | Broad beam | Fixed field IMRT | |
Port # | *** | 7 | |
Port per day | 1 | 7 |
Contouring
Treatment planning
Carbon-ion radiation therapy
Intensity-modulated radiotherapy
Dose–volume histogram (DVH) comparison
where D is the total dose, N is the number of fractions of the treatment. Akimoto et al. and Huang et al. reported the rectal toxicity tolerance line in their study [
NTCP calculation
where n, m, TD50 are LKB NTCP parameters. The n parameter represents the volume effect, i.e., the seriality or parallelism of the organs. The m parameter corresponds to the gradient of the NTCP curve. The TD50 parameter is the dose that has a 50% probability of causing complications when the organ is uniformly irradiated with TD50. vi and Di are volume bin and dose of DVH, respectively. x is an arbitrary real number that aims to integrate a Gaussian distribution in equation (2). The NTCP parameters used in this study are enlisted in Table 2 ([
Author | Endpoint | N | m | TD50 | α/β for EQD2 | CIRT NTCP | IMRT NTCP |
---|---|---|---|---|---|---|---|
Fukahori [30] | Grade over 2 RTOG | 0.012 | 0.046 | 69.1 | – | 0% ± 0% | |
Michalski [20] | Grade over 2 rectal toxicity | 0.09 | 0.13 | 76.9 | 3 | 0.85% ± 0.40% | 2.85% ± 1.60% |
5.4 | 0.28% ± 0.14% | 1.41% ± 0.81% | |||||
Tucker [31] | RTOG grade over 2 | 0.08 | 0.14 | 78 | 3 | 1.64% ± 0.62% | 4.35% ± 1.98% |
5.4 | 0.63% ± 0.24% | 2.34% ± 1.09% | |||||
Sohn [32] | Grade over 2 CTCAE3.0 | 0.08 | 0.108 | 78.4 | 3 | 0.27% ± 0.16% | 1.32% ± 0.94% |
5.4 | 0.06% ± 0.04% | 0.49% ± 0.37% | |||||
Rancati [33] | Grade over 2 bleeding | 0.23 | 0.19 | 81.9 | 3 | 0.15% ± 0.08% | 0.58% ± 0.39% |
5.4 | 0.09% ± 0.05% | 0.41% ± 0.27% | |||||
0.24 | 0.14 | 75.7 | 3 | 0.01 ± 0.01% | 0.09% ± 0.12% | ||
5.4 | 0.00% ± 0.00% | 0.05% ± 0.07% | |||||
Fukahori [30] | Grade over 1 RTOG | 0.035 | 0.1 | 63.6 | – | 1.22% ± 0.37% | |
Gulliford [34] | Grade over 1 | 0.14 | 0.26 | 59.2 | 3 | 18.19% ± 3.67% | 28.81% ± 6.95% |
5.4 | 13.36% ± 2.73% | 23.81% ± 5.83% |
Results
DVH comparison



NTCP calculation
- Takakusagi Y.
- Katoh H.
- Kano K.
- Anno W.
- Tsuchida K.
- Mizoguchi N.
- et al.
Authors | Year | Treatment | No. of PTs | Dose | Fractions | >Grade 2 (%) | >Grade1 (%) | Criteria |
---|---|---|---|---|---|---|---|---|
Kupelian | 2005 | IMRT | 100 | 70 Gy | 28 | 11.0 | RTOG | |
Spratt | 2013 | IMRT | 1002 | 86.4 Gy | 48 | 4.4 | CTCAE 4.0 | |
Hoffman | 2014 | IMRT | 101 | 75.6 Gy | 42 | 5.0 | 21.8 | RTOG |
IMRT | 102 | 72 Gy | 30 | 10.8 | 37.3 | RTOG | ||
Lieng | 2017 | IMRT | 96 | 60 Gy | 20 | 4.2 | RTOG | |
27 | 66 Gy | 22 | 18.5 | RTOG | ||||
Takemoto | 2018 | IMRT | 74 | 74/78 Gy | 37/39 | 12.4 | CTCAE 4.0 | |
101 | 73.5/77.7 Gy | 35/37 | 14.1 | CTCAE 4.0 | ||||
173 | 72.6/74.8 Gy | 33/34 | 7.9 | CTCAE 4.0 | ||||
Ishikawa | 2012 | CIRT | 927 | 57.6–66.0 Gy (RBE) | 16–20 | 1.9 | RTOG | |
Okada | 2012 | CIRT | 198 | 57.6 Gy (RBE) | 16 | 1.5 | 9.6 | RTOG |
Nomiya | 2014 | CIRT | 46 | 51.6 Gy(RBE) | 12 | 0 | 7.0 | CTCAE 4.0 |
Takakusagi | 2020 | CIRT | 253 | 51.6 Gy(RBE) | 12 | 1.2 | 4.7 | CTCAE 4.0 |
Present study | ||||||||
Estimated NTCP | IMRT | 76 | 63 Gy | 21 | 0.05–4.35 | 23.81–28.81 | CTCAE 4.0 | |
CIRT | 76 | 57.6 Gy(RBE) | 16 | 0.0–1.64 | 1.22–18.19 | CTCAE 4.0 | ||
Clinical Outcome | IMRT | 76 | 63 Gy | 21 | 1.3 | 9.2 | CTCAE 4.0 | |
CIRT | 76 | 57.6 Gy(RBE) | 16 | 1.3 | 9.2 | CTCAE 4.0 |
Discussion
- Takakusagi Y.
- Katoh H.
- Kano K.
- Anno W.
- Tsuchida K.
- Mizoguchi N.
- et al.
Effect of moderate hypofractionation in IMRT
Study limitations
- Kawamura H.
- Kubo N.
- Sato H.
- Mizukami T.
- Katoh H.
- Ishikawa H.
- et al.
Conclusions
Declaration of Competing Interest
Acknowledgements
Funding
References
Ishikawa H, Tsuji H, Kamada T, Akakura K, Suzuki H. Carbon-ion radiation therapy for prostate cancer 2012:296–305. https://doi.org/10.1111/j.1442-2042.2012.02961.x.
- Carbon ion radiotherapy in Japan : an assessment of 20 years.Lancet Oncol. 2015; 16: e93-e100https://doi.org/10.1016/S1470-2045(14)70412-7
- Carbon ion radiotherapy in advanced hypofractionated regimens for prostate cancer: From 20 to 16 fractions.Int J Radiat Oncol Biol Phys. 2012; 84: 968-972https://doi.org/10.1016/j.ijrobp.2012.01.072
- Phase I/II trial of definitive carbon ion radiotherapy for prostate cancer: Evaluation of shortening of treatment period to 3 weeks.Br J Cancer. 2014; 110: 2389-2395https://doi.org/10.1038/bjc.2014.191
- Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer.Radiat Oncol. 2020; 15https://doi.org/10.1186/s13014-020-01575-7
- Moderately hypofractionated carbon ion radiotherapy for prostate cancer; A prospective observational study “gUNMA0702”.BMC Cancer. 2020; 20https://doi.org/10.1186/s12885-020-6570-8
- The linear-quadratic formula and progress in fractionated radiotherapy.Br J Radiol. 1989; 62: 679-694https://doi.org/10.1259/0007-1285-62-740-679
- Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: Bad news, good news, or no news?.Int J Radiat Oncol Biol Phys. 2013; 85: 89-94https://doi.org/10.1016/j.ijrobp.2012.03.004
- Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer.J Clin Oncol. 2017; 35: 1884-1890https://doi.org/10.1200/JCO.2016.71.7397
- Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial.Lancet Oncol. 2016; 17: 1047-1060https://doi.org/10.1016/S1470-2045(16)30102-4
- Long-term outcomes of a phase II trial of moderate hypofractionated image-guided intensity modulated radiotherapy (IG-IMRT) for localized prostate cancer.Radiother Oncol. 2017; 122: 93-98https://doi.org/10.1016/j.radonc.2016.10.017
- Hypofractionated intensity-modulated radiotherapy for intermediate- And high-risk prostate cancer: A retrospective study.Vivo (Brooklyn). 2019; 33: 1235-1241
- Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.Int J Radiat Oncol. 1999; 44: 201-210https://doi.org/10.1016/S0360-3016(98)00544-6
- A statistical theory of cell killing by radiation of varying linear energy transfer.Radiat Res. 1994; 140: 366-374https://doi.org/10.2307/3579114
- Computation of cell survival in heavy ion beams for therapy: The model and its approximation.Radiat Environ Biophys. 1997; 36: 59-66https://doi.org/10.1007/s004110050055
- Radiobiological issues in prospective carbon ion therapy trials.Med Phys. 2018; 45: e1096-e1110https://doi.org/10.1002/mp.12506
- Python Tutorial.Python Softw Found. 2012; 42: 1-136https://doi.org/10.1111/j.1094-348X.2008.00203_7.x
- Rectal bleeding after hypofractionated radiotherapy for prostate cancer: Correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding.Int J Radiat Oncol Biol Phys. 2004; 60: 1033-1039https://doi.org/10.1016/j.ijrobp.2004.07.695
- Late Rectal Toxicity : Dose – Volume Effects of Conformal Radiotherapy for.Prostate Cancer. 2002; 54: 1314-1321
- Radiation Dose-Volume Effects in Radiation-Induced Rectal Injury.Int J Radiat Oncol Biol Phys. 2010; 76: S123-S129https://doi.org/10.1016/j.ijrobp.2009.03.078
- A TCP model for external beam treatment of intermediate-risk prostate cancer.Med Phys. 2013; 40: 1-11https://doi.org/10.1118/1.4790469
- A new isoeffect curve for change in dose per fraction.Radiother Oncol. 1983; 1: 187-191https://doi.org/10.1016/S0167-8140(83)80021-8
- Bioeffect modeling and equieffective dose concepts in radiation oncology-Terminology, quantities and units.Radiother Oncol. 2012; 105: 266-268https://doi.org/10.1016/j.radonc.2012.10.006
- Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy.Radiother Oncol. 2009; 91: 307-313https://doi.org/10.1016/j.radonc.2009.02.003
- Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy.Int J Radiat Oncol. 2014; 88: 715-722https://doi.org/10.1016/j.ijrobp.2013.11.241
- Complication probability as assessed from dose-volume histograms.Radiat Res Suppl. 1985; 8: S13-S19https://doi.org/10.2307/3583506
- Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method.Int J Radiat Oncol Biol Phys. 1989; 16: 1623-1630
- Fitting of normal tissue tolerance data to an analytic function.Int J Radiat Oncol Biol Phys. 1991; 21: 123-135https://doi.org/10.1016/0360-3016(91)90172-Z
- Reporting and analyzing dose distributions: a concept of equivalent uniform dose.Med Phys. 1997; 24: 103-110https://doi.org/10.1118/1.598154
- Estimation of late rectal normal tissue complication probability parameters in carbon ion therapy for prostate cancer.Radiother Oncol. 2016; 118: 136-140https://doi.org/10.1016/j.radonc.2015.11.023
- Fit of a Generalized Lyman Normal-Tissue Complication Probability (NTCP) Model to Grade ≥ 2 Late Rectal Toxicity Data From Patients Treated on Protocol RTOG 94–06.Int J Radiat Oncol Biol Phys. 2007; 69: S8https://doi.org/10.1016/j.ijrobp.2007.04.078
- Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models.Int J Radiat Oncol Biol Phys. 2007; 67: 1066-1073https://doi.org/10.1016/j.ijrobp.2006.10.014
- Fitting late rectal bleeding data using different NTCP models: Results from an Italian multi-centric study (AIROPROS0101).Radiother Oncol. 2004; 73: 21-32https://doi.org/10.1016/j.radonc.2004.08.013
- Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise.Radiother Oncol. 2012; 102: 347-351https://doi.org/10.1016/j.radonc.2011.10.022
- Fractionation and late rectal toxicity.Int J Radiat Oncol Biol Phys. 2004; 60: 1013-1015https://doi.org/10.1016/j.ijrobp.2004.04.014
- Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer.Int J Radiat Oncol Biol Phys. 2013; 85: 686-692https://doi.org/10.1016/j.ijrobp.2012.05.023
- Risk of late toxicity in men receiving dose-escalated hypofractionated intensity modulated prostate radiation therapy: results from a randomized trial.Int J Radiat Oncol Biol Phys. 2014; 88: 1074-1084https://doi.org/10.1016/j.ijrobp.2014.01.015
- Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Long-term outcomes. Int.J Radiat Oncol. 2005; 63: 1463-1468https://doi.org/10.1016/j.ijrobp.2005.05.054
Takemoto S, Shibamoto Y, Sugie C, Manabe Y, Yanagi T, Iwata H, et al. Long-term results of intensity-modulated radiotherapy with three dose-fractionation regimens for localized prostate cancer. J Radiat Res 2019; 60:221–7. Doi: 10.1093/jrr/rry089.
- Hypofractionated radiation therapy (66 gy in 22 fractions at 3 gy per fraction) for favorable-risk prostate cancer: Long-term outcomes.Int J Radiat Oncol Biol Phys. 2013; 86: 534-539https://doi.org/10.1016/j.ijrobp.2013.02.010
- Carbon ion radiation therapy for prostate cancer: Results of a prospective phase II study.Radiother Oncol. 2006; 81: 57-64https://doi.org/10.1016/j.radonc.2006.08.015
- A multi-institutional analysis of prospective studies of carbon ion radiotherapy for prostate cancer: A report from the Japan Carbon ion Radiation Oncology Study Group (J-CROS).Radiother Oncol. 2016; 121: 288-293https://doi.org/10.1016/j.radonc.2016.10.009
- Fractionation and protraction for radiotherapy of prostate carcinoma.Int J Radiat Oncol Biol Phys. 1999; 43: 1095-1101https://doi.org/10.1016/S0360-3016(98)00438-6
- What do we know about the α/β for prostate cancer?.Med Phys. 2012; 39: 3189-3201https://doi.org/10.1118/1.4712224
- Which alpha/beta ratio for prostate cancer in 2019?.Cancer/Radiotherapie. 2019; 23: 342-345https://doi.org/10.1016/j.canrad.2019.01.004
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy