Highlights
- •Implemented RBE-weighted 4D particle dose alculation for irregular motion.
- •Enables dose calculations on arbitrarily long series of CT images.
- •Impact of irregular motion studied on simulated human phantom CT sequences.
- •Experimental validation of dose calculation algorithm with moving IC array detector.
- •Will enable exploration of effects and study of motion mitigation strategies.
Abstract
Keywords
1. Introduction
- Riboldi M.
- Orecchia R.
- Baroni G.
- Bert C.
- Durante M.
- Takao S.
- Miyamoto N.
- Matsuura T.
- Onimaru R.
- Katoh N.
- Inoue T.
- et al.
- Riboldi M.
- Orecchia R.
- Baroni G.
- Wolf M.
- Anderle K.
- Durante M.
- Graeff C.
- Kanai T.
- Paz A.
- Furuichi W.
- Liu C.S.
- He P.
- Mori S.
- Bert C.
- Durante M.
- Riboldi M.
- Orecchia R.
- Baroni G.
- Kubiak T.
- Phillips J.
- Gueorguiev G.
- Shackleford J.A.
- Grassberger C.
- Dowdell S.
- Paganetti H.
- et al.
- Kostiukhina N.
- Palmans H.
- Stock M.
- Georg D.
- Knäusl B.
- Kostiukhina N.
- Palmans H.
- Stock M.
- Knopf A.
- Georg D.
- Knäusl B.
- Paganetti H.
- Elsässer T.
- Krämer M.
- Scholz M.
- Elsässer T.
- Weyrather W.K.
- Friedrich T.
- Durante M.
- Iancu G.
- Krämer M.
- et al.
2. Materials and methods
- Richter D.
- Schwarzkopf A.
- Trautmann J.
- Krämer M.
- Durante M.
- Jäkel O.
- et al.
2.1 The dose calculation algorithm
- Richter D.
- Schwarzkopf A.
- Trautmann J.
- Krämer M.
- Durante M.
- Jäkel O.
- et al.
- McMahon S.J.
with the normalization factor
are calculated based on the local effect model (LEM) [
with . From Eq. 1 follows the biological effect
2.2 Experimental validation
with amplitude and period variations between subsequent periods, each period ranging from one minimum to another. Here, and denote the motion amplitude and period of the current motion and the time of the precedent minimum. The average period T was set to 5 s. Motion periods and amplitudes were varied to uniformly distributed random values in the range ] and , respectively. A series of seven measurements labeled I to VII with different motion patterns was performed. The motion settings are summarized in Table 1. 238.63 Me V/u scanned carbon ion beams with particles per spot were delivered across a 60 60 mm2 grid. Spot spacing was 2 mm and the beam was assumed to be Gaussian shaped with a full width half maximum of 5.78 mm. The beam was scanning line by line with alternating direction over the target volume. The motion of the detector was measured with an optical distance laser sensor (SICK OD100-35P840; SICK AG, Waldkirch, Germany).

Motion | A (mm) | (%) | ||
---|---|---|---|---|
I | 10 | 0 | 5 | 0 |
II | 20 | 0 | 5 | 0 |
III | 30 | 0 | 5 | 0 |
IV | 20 | 25 | 5 | 0 |
V | 20 | 50 | 5 | 0 |
VI | 20 | 0 | 5 | 50 |
VII | 20 | 50 | 5 | 50 |
- Aricò G.
- Gehrke T.
- Jakubek J.
- Gallas R.
- Berke S.
- Jäkel O.
- et al.
2.3 Dose calculation for irregular motion using a virtual phantom

- Periodic: Periodic motion from Eq. 12 with and for all periods and no baseline drifts.
- Fixed baseline: Nonperiodic motion, with and randomly generated with a uniform distribution between +-25% around and , and no baseline drift.
- Baseline drift: The same motion as in the fixed baseline scenario, but with an additional linear baseline drift of .
- Ji Saitoh
- Shirai K.
- Mizukami T.
- Abe T.
- Ebara T.
- Ohno T.
- et al.
- Kasuya G.
- Kato H.
- Yasuda S.
- Tsuji H.
- Yamada S.
- Haruyama Y.
- et al.
3. Results
3.1 Experimental validation
Motion | A | pass rate (%) | |||||
---|---|---|---|---|---|---|---|
(mm) | 3%/3 mm | 2%/2 mm | |||||
I | 10 | 0 | 0 | 100.00 | 88.14 | 0.9924 | 0.9553 |
II | 20 | 0 | 0 | 100.00 | 90.00 | 0.9913 | 0.946 |
III | 30 | 0 | 0 | 100.00 | 90.65 | 0.9889 | 0.93855 |
IV | 20 | 25 | 0 | 100.00 | 89.68 | 0.9915 | 0.94765 |
V | 20 | 50 | 0 | 99.20 | 88.00 | 0.9872 | 0.94805 |
VI | 20 | 0 | 50 | 100.00 | 84.13 | 0.9889 | 0.9431 |
VII | 20 | 50 | 50 | 100.00 | 86.78 | 0.9912 | 0.9528 |







3.2 Dose calculation for irregular motion using a virtual phantom

Motion scenario | # Rescans | ||||
---|---|---|---|---|---|
Periodic | 1 | 106.9 | 90.0 | 16.9 | 81.2 |
20 | 101.6 | 96.9 | 4.7 | 99.6 | |
Fixed baseline | 1 | 102.5 | 89.0 | 13.6 | 76.6 |
20 | 101.4 | 96.0 | 5.4 | 98.5 | |
Baseline drift | 1 | 106.4 | 89.4 | 17.0 | 79.0 |
20 | 108.1 | 89.0 | 19.1 | 83.7 |
4. Discussion
- Bert C.
- Richter D.
- Durante M.
- Rietzel E.
- Bert C.
- Richter D.
- Durante M.
- Rietzel E.
- Richter D.
- Schwarzkopf A.
- Trautmann J.
- Krämer M.
- Durante M.
- Jäkel O.
- et al.
- Kostiukhina N.
- Palmans H.
- Stock M.
- Georg D.
- Knäusl B.
- Kostiukhina N.
- Palmans H.
- Stock M.
- Knopf A.
- Georg D.
- Knäusl B.
- Eiben B.
- Bertholet J.
- Menten M.J.
- Nill S.
- Oelfke U.
- McClelland J.R.
- Wolf M.
- Anderle K.
- Durante M.
- Graeff C.
- Takao S.
- Miyamoto N.
- Matsuura T.
- Onimaru R.
- Katoh N.
- Inoue T.
- et al.
5. Conclusions
- Riboldi M.
- Orecchia R.
- Baroni G.
- Wolf M.
- Anderle K.
- Durante M.
- Graeff C.
Declaration of Competing Interest
Acknowledgements
References
- Charged particles in radiation oncology.Nat Rev Clin Oncol. 2010; 7: 37-43https://doi.org/10.1038/nrclinonc.2009.183
- Particle therapy in Europe.Mol Oncol. 2020; 14: 1492-1499https://doi.org/10.1002/1878-0261.12677
- Real-time tumour tracking in particle therapy: technological developments and future perspectives.Lancet Oncol. 2012; 13https://doi.org/10.1016/S1470-2045(12)70243-7
- Motion in radiotherapy: particle therapy.Phys Med Biol. 2011; 56https://doi.org/10.1088/0031-9155/56/16/R01
- Perturbation analysis of 4d dose distribution for scanned carbon-ion beam radiotherapy.Phys Med. 2020; 74: 74-82https://doi.org/10.1016/j.ejmp.2020.05.003
- Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system a preliminary version of this study was presented at the 55th Annual Meeting of the American Society for Radiation Oncology.Int J Radiat Oncol Biol Phys. 2016; 94: 172-180https://doi.org/10.1016/j.ijrobp.2015.09.024
- The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.Radiother Oncol. 2018; 126: 339-346https://doi.org/10.1016/j.radonc.2017.09.001
- Management of organ motion in scanned ion beam therapy.Radiat Oncol. 2017; 12: 1-6https://doi.org/10.1186/s13014-017-0911-z
- Multigating, a 4D optimized beam tracking in scanned ion beam therapy.Technol Cancer Res Treat. 2014; 13: 497-504https://doi.org/10.7785/tcrtexpress.2013.600277
Pfeiler T, Ahmad Khalil D, Bäumer C, Blanck O, Chan M, Engwall E, et al. 4D robust optimization in pencil beam scanning proton therapy for hepatocellular carcinoma. In J Phys Conf Ser, volume 1154. Institute of Physics Publishing. ISSN 17426596, 012021. doi: 10.1088/1742-6596/1154/1/012021.
- Robust treatment planning with 4D intensity modulated carbon ion therapy for multiple targets in stage IV non-small cell lung cancer.Phys Med Biol. 2020; 65215012https://doi.org/10.1088/1361-6560/aba1a3
- Four-dimensional carbon-ion pencil beam treatment planning comparison between robust optimization and range-adapted internal target volume for respiratory-gated liver and lung treatment.Phys Med. 2020; 80https://doi.org/10.1016/j.ejmp.2020.11.009
- Log file-based dose reconstruction and accumulation for 4D adaptive pencil beam scanned proton therapy in a clinical treatment planning system: Implementation and proof-of-concept.Med Phys. 2019; 46: 1140-1149https://doi.org/10.1002/mp.13371
- Acquiring a four-dimensional computed tomography dataset using an external respiratory signal.Phys Med Biol. 2003; 48: 45-62https://doi.org/10.1088/0031-9155/48/1/304
- Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation.Radiother Oncol. 2020; 150: 268-274https://doi.org/10.1016/j.radonc.2020.07.055
- Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.Med Phys. 2010; 37: 2822-2826https://doi.org/10.1118/1.3426002
- Feasibility of MRI guided proton therapy: magnetic field dose effects.Phys Med Biol. 2008; 53: 5615-5622https://doi.org/10.1088/0031-9155/53/20/003
- Review of ultrasound image guidance in external beam radiotherapy part II: Intra-fraction motion management and novel applications.Phys Med Biol. 2016; 61: R90-R137https://doi.org/10.1088/0031-9155/61/8/R90
- Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.Phys Med Biol. 2004; 49: 243-255https://doi.org/10.1088/0031-9155/49/2/005
- Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy.Phys Med Biol. 2012; 57: 8201-8215https://doi.org/10.1088/0031-9155/57/24/8201
- Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.Br J Radiol. 2016; 89https://doi.org/10.1259/bjr.20150275
- Motion management in particle therapy.Med Phys. 2018; 45: e994-e1010https://doi.org/10.1002/mp.12679
- Computing proton dose to irregularly moving targets.Phys Med Biol. 2014; 59https://doi.org/10.1088/0031-9155/59/15/4261
- Validation of a model for physical dose variations in irregularly moving targets treated with carbon ion beams.Med Phys. 2019; 46: 3663-3673https://doi.org/10.1002/mp.13662
- Modeling RBE-weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams.Med Phys. 2020; 47: 2768-2778https://doi.org/10.1002/mp.14135
- Virtual 4DCT from 4DMRI for the management of respiratory motion in carbon ion therapy of abdominal tumors.Med Phys. 2020; 47: 909-916https://doi.org/10.1002/mp.13992
- Four-Dimensional Dose Reconstruction for Scanned Proton Therapy Using Liver 4DCT-MRI.Int J Radiat Oncol Biol Phys. 2016; 95: 216-223https://doi.org/10.1016/j.ijrobp.2016.02.050
- 4D XCAT phantom for multimodality imaging research.Med Phys. 2010; 37: 4902-4915https://doi.org/10.1118/1.3480985
Ehrbar S, Perrin R, Peroni M, Bernatowicz K, Parkel T, Pytko I, et al. Respiratory motion-management in stereotactic body radiation therapy for lung cancer – A dosimetric comparison in an anthropomorphic lung phantom (LuCa). Radiother Oncol 2016;121. doi:10.1016/j.radonc.2016.10.011.
- Dynamic lung phantom commissioning for 4D dose assessment in proton therapy.Phys Med Biol. 2019; 64235001https://doi.org/10.1088/1361-6560/ab5132
- Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy.Phys Med Biol. 2020; 65125015https://doi.org/10.1088/1361-6560/ab8d79
- Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer.Phys Med Biol. 2014; 59https://doi.org/10.1088/0031-9155/59/22/R419
- Computation of cell survival in heavy ion beams for therapy: the model and its approximation.Radiat Environ Biophys. 1997; 36: 59-66https://doi.org/10.1007/s004110050055
- Rapid calculation of biological effects in ion radiotherapy.Phys Med Biol. 2006; 51: 1959-1970https://doi.org/10.1088/0031-9155/51/8/001
- Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo.Int J Radiat Oncol Biol Phys. 2008; 71https://doi.org/10.1016/j.ijrobp.2008.02.037
- Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning.Int J Radiat Oncol Biol Phys. 2010; 78https://doi.org/10.1016/j.ijrobp.2010.05.014
- Treatment planning for heavy-ion radiotherapy: Physical beam model and dose optimization.Phys Med Biol. 2000; 45: 3299-3317https://doi.org/10.1088/0031-9155/45/11/313
- Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy.Med Phys. 2013; 40https://doi.org/10.1118/1.4800802
- Zeitlich aufgelöste Dosisberechnung für gescannte Kohlenstoffionen auf sequentiellen Bilddaten zur Erfassung unregelmäßiger Bewegungen (Master Thesis).Darmstadt. 2018;
- A molecular theory of cell survival.Phys Med Biol. 1973; 18: 78-87https://doi.org/10.1088/0031-9155/18/1/007
- The linear quadratic model: usage, interpretation and challenges.Phys Med Biol. 2019; 64https://doi.org/10.1088/1361-6560/aaf26a
- A modular dose delivery system for treating moving targets with scanned ion beams: Performance and safety characteristics, and preliminary tests.Phys Med. 2020; 76: 307-316https://doi.org/10.1016/j.ejmp.2020.07.029
- Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: Comparison between water and PMMA targets.Phys Med Biol. 2017; 62https://doi.org/10.1088/1361-6560/aa875e
- An objective method to evaluate radiation dose distributions varying by three orders of magnitude.Med Phys. 2019; 46: 1888-1895https://doi.org/10.1002/mp.13420
- Realistic CT simulation using the 4D XCAT phantom.Med Phys. 2008; 35: 3800-3808https://doi.org/10.1118/1.2955743
- A method for incorporating organ motion due to breathing into 3D dose calculations in the liver: Sensitivity to variations in motion.Med Phys. 2003; 30: 2643-2649https://doi.org/10.1118/1.1609057
- Hypofractionated carbon-ion radiotherapy for stage I peripheral nonsmall cell lung cancer (GUNMA0701): Prospective phase II study.Cancer Med. 2019; 8https://doi.org/10.1002/cam4.2561
- Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: Combined analyses of 2 prospective trials.Cancer. 2017; 123https://doi.org/10.1002/cncr.30816
- Scanned carbon beam irradiation of moving films: Comparison of measured and calculated response.Radiat Oncol. 2012; 7https://doi.org/10.1186/1748-717X-7-55
- Organ motion quantification and margins evaluation in carbon ion therapy of abdominal lesions.Phys Med. 2020; 75: 33-39https://doi.org/10.1016/j.ejmp.2020.05.014
- Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion.Phys Med Biol. 2011; 56: 7337-7351https://doi.org/10.1088/0031-9155/56/23/001
- Consistent and invertible deformation vector fields for a breathing anthropomorphic phantom: A post-processing framework for the XCAT phantom.Phys Med Biol. 2020; 65https://doi.org/10.1088/1361-6560/ab8533
- Motion mitigation in scanned ion beam therapy through 4D-optimization.Phys Med. 2014; 30: 570-577https://doi.org/10.1016/j.ejmp.2014.03.011
LeDoeuff G. Beam tracking for compensation of irregular motion (MSc Thesis). Darmstadt 2018.