Highlights
- •X-ray synchrotron phase-contrast microtomography to obtain 3D images of soft tissues.
- •Phase-contrast effects to improve the visualization of Thoropa miliaris frog lenses.
- •Lenses segmentation methods: Interpolation, Watershed and U-Net architecture.
- •Dice similarity coefficient and volume quantification to assess segmentation methods.
Abstract
Purpose
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Phase-contrast X-ray computed tomography for observing biological soft tissues.Nat Med. 1996; 2: 473-475https://doi.org/10.1038/nm0496-473
- X-ray phase-contrast imaging: From pre-clinical applications towards clinics.Phys Med Biol. 2012; 58: R1-R35https://doi.org/10.1088/0031-9155/58/1/R1
- CT dose reduction factors in the thousands using X-ray phase contrast.Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-16264-x
- X-ray-based 3D virtual histology – adding the next dimension to histological analysis.Mol Imag Biol. 2018; 20: 732-741https://doi.org/10.1007/s11307-018-1246-3
- Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure.J Microsc. 2007; 227: 51-71https://doi.org/10.1111/j.1365-2818.2007.01785.x
- Advances in biological structure, function, and physiology using synchrotron X-ray imaging.Annu Rev Physiol. 2008; 70: 119-142https://doi.org/10.1146/annurev.physiol.70. 113006.100434
- Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs.Sci Rep. 2015; 5: 9973https://doi.org/10.1038/srep09973
- Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord.Sci Rep. 2015; 5https://doi.org/10.1038/srep08514
- Cartilage and soft tissue imaging using X-rays: propagation-based phase-contrast computed tomography of the human knee in comparison with clinical imaging techniques and histology.Invest Radiol. 2014; 49: 627-634https://doi.org/10.1097/RLI.0000000000000063
- High resolution hard X-ray 3D mapping of a Macaca fascicularis eye: A feasibility study without contrast agents.Physica Med. 2018; 51: 7-12https://doi.org/10.1016/j. ejmp.2018.06.004
- Ecdysis period of Rhodnius prolixus head investigated using phase contrast synchrotron microtomography.Physica Med. 2016; 32: 812-817https://doi.org/10.1016/j.ejmp.2016.05.051
- Micrometer-resolution X-ray tomographic full-volume reconstruction of an intact post-mortem juvenile rat lung.Histochem Cell Biol. 2020; 1–12https://doi.org/10.1007/s00418-020-01868-8
- Comprehensive analysis of animal models of cardiovascular disease using multiscale X-ray phase contrast tomography.Sci Rep. 2019; 9: 6996https://doi.org/10.1038/s41598-019-43407-z
- Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra.J Synchrotron Radiat. 2019; 26: 1343-1353https://doi.org/10.1107/S1600577519005502
- Recent advances in X-ray microtomography applied to materials.Int Mater Rev. 2008; 53: 129-181https://doi.org/10.1179/174328008X277803
- Ecdysis period of Rhodnius prolixus head investigated using phase contrast synchrotron microtomography.Phys Med: Eur J Med Phys. 2016; 32: 1120-1797https://doi.org/10.1016/j.ejmp.2016.05.051
- Laboratory X-ray micro-computed tomography: a user guideline for biological samples.GigaScience. 2017; 6https://doi.org/10.1093/gigascience/gix027
Giuliani A, Mazzoni S, Manescu A, Tromba G. Chapter 1 – Interactions between tissues, cells, and biomaterials: an advanced evaluation by synchrotron radiation-based high-resolution tomography. In: Holban AM, Grumezescu AM, eds. Materials for Biomedical Engineering. Elsevier. ISBN 978-0-12-816901-8; 2019:1–34. https://doi.org/10.1016/B978-0-12-816901-8.00001-8.
- Fiji: an open-source platform for biological-image analysis.Nat Methods. 2012; 9: 676-682https://doi.org/10.1038/nmeth.2019
- Three-dimensional visualization of soft biological structures by X-ray computed micro-tomography.J Cell Sci. 2016; 129: 2483-2492https://doi.org/10.1242/jcs.179077
- Synchrotron microtomography applied to the volumetric analysis of internal structures of Thoropa miliaris tadpoles.Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-75993-8
Chollet F. Deep Learning with Python. Manning Publications; 2017. ISBN 9781617294433.
- Deep learning in medical imaging and radiation therapy.Med Phys. 2019; 46: e1-e36https://doi.org/10.1002/mp.13264
Song Y, Yu Z, Zhou T, Teoh JY, Lei B, Choi K, Qin J. CNN in CT image segmentation: Beyond loss function for exploiting ground truth images. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020. p. 325–328. https://doi.org/10.1109/ISBI45749.2020.9098488.
- Virtual dissection of Thoropa miliaris tadpole using phase-contrast synchrotron microtomography.J Instrum. 2018; 13: C05012https://doi.org/10.1088/1748-0221/13/05/c0501
- Deep learning for tidemark segmentation in human osteochondral tissues imaged with micro-computed tomography.in: Blanc-Talon J. Delmas P. Philips W. Popescu D. Scheunders P. Advanced Concepts for Intelligent Vision Systems. Springer International Publishing, Cham2020: 131-138https://doi.org/10.1007/978-3-030-40605-9_12
- A fixed-point model for pancreas segmentation in abdominal CT scans.in: Descoteaux M. Duchesne S. Franz A. Jannin P. Collins D.L. Maier-Hein L. Medical Image Computing and Computer Assisted Intervention - MICCAI 2017. Springer International Publishing, 2017: 693-701https://doi.org/10.1007/978-3-319-66182-7_79
- Deep learning and its application to medical image segmentation.Medical Imaging Technol. 2018; 36: 63-71https://doi.org/10.11409/mit.36.63
- Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation.J Synchrotron Radiat. 2019; 26: 607-618https://doi.org/10.1107/S1600577519003060
- Comparative analysis of sample preparation protocols of soft biological tissues for morphometric studies using synchrotron-based X-ray microtomography.J Synchrotron Radiat. 2019; 26: 2013-2023https://doi.org/10.1107/s1600577519011299
- Soft tissue small avascular tumor imaging with X-ray phase-contrast micro-CT in-line holography.in: Hsieh J. Samei E. Medical Imaging 2008: Physics of Medical Imaging. SPIE, 2008: 1272-1278https://doi.org/10.1117/12.772761
- Medical imaging with synchrotron radiation.in: Mobilio S. Boscherini F. Meneghini C. Synchrotron Radiation. Springer Berlin Heidelberg, Berlin, Heidelberg2015: 593-614https://doi.org/10.1007/978-3-642-55315-8_22
- Size and specimen-dependent strategy for X-ray micro-ct and tem correlative analysis of nervous system samples.Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-02998-1
- In situ phase contrast X-ray brain CT.Sci Rep. 2018; 8https://doi.org/10.1038/s41598-018-29841-5
- Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object.J Microsc. 2002; 206: 33-40https://doi.org/10.1046/j.1365-2818.2002.01010.x
- SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.Adv Struct Chem Imaging. 2017; 3https://doi.org/10.1186/s40679-016-0036-8
- Principles of Computerized Tomographic Imaging. IEEE Press, New York1988
- Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?.Inverse Prob. 2009; 25123009https://doi.org/10.1088/0266-5611/25/12/123009
- Springer, Berlin Heidelberg2010https://doi.org/10.1007/978-3-642-05368-9 Medical Image Reconstruction.
Siqueira CC, Sluys MV, Ariani CV, Rocha CFD. Feeding Ecology of Thoropa Miliaris (Anura, Cycloramphidae) in Four Areas of Atlantic Rain Forest, Southeastern Brazil. J Herpetol 2006;40(4):520–525. https://doi.org/10.1670/0022-1511(2006)40[520:FEOTMA]2.0.CO;2.
- A simplified table for staging anuran embryos and larvae with notes on identification.Herpetologica. 1960; 16: 183-190
- University of Chicago Press, Chicago, IL1999 Tadpoles: The Biology of Anuran Larvae.
- More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.Dev Biol. 2015; 408: 188-195https://doi.org/10.1016/j.ydbio.2015.02.018
- Molecular and cellular basis of regeneration and tissue repair.Cellular Mol Life Sci. 2007; 65: 54-63https://doi.org/10.1007/s00018-007-7431-1
- Amphibians as models for studying environmental change.ILAR J. 2007; 48: 270-277https://doi.org/10.1093/ilar.48.3.270
- Scale-space and edge detection using anisotropic diffusion.IEEE Trans Pattern Anal Mach Intell. 1990; 12: 629-639https://doi.org/10.1109/34.56205
- Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures.Water Resour Res. 2009; 45https://doi.org/10.1029/2009wr008087
- Improved method for effective rock microporosity estimation using X-ray microtomography.Micron. 2017; 97: 11-21https://doi.org/10.1016/j.micron.2017.01.003
- A highly interactive system for visual data analysis.in: Visualization Handbook. Elsevier, 2005: 749-767
- First nearly complete skull of Gallotia auaritae (lower-middle pleistocene, squamata, gallotiinae) and a morphological phylogenetic analysis of the genus Gallotia.Sci Rep. 2019; 9https://doi.org/10.1038/s41598-019-52244-z
- Surgical-orthodontic treatment for class II asymmetry: outcome and influencing factors.Sci Rep. 2019; 9: 17956https://doi.org/10.1038/s41598-019-54317-5
- X-ray microtomography analysis of lime application effects on soil porous system.Geoderma. 2018; 324: 119-130https://doi.org/10.1016/j.geoderma.2018. 03.015
- Complete 3 dimensional reconstruction of parturient pelvic floor.J Gynecol Obstet Hum Reprod. 2020; 49: 101635https://doi.org/10.1016/j.jogoh.2019.101635
- Morphological segmentation revisited.in: Bilodeau M. Meyer F. Schmitt M. Space, Structure and Randomness. Springer, New York2005: 315-347https://doi.org/10.1007/0-387-29115-6_13
- An overview of watershed algorithm implementations in open source libraries.J Imaging. 2018; 4https://doi.org/10.3390/jimaging4100123
- Image segmentation using gray-scale morphology and marker-controlled watershed transformation.Discrete Dyn Nat Soc. 2008; 2008: 1-8https://doi.org/10.1155/2008/384346
- Assessment of neural networks training strategies for histomorphometric analysis of synchrotron radiation medical images.Nucl Instrum Methods Phys Res, Sect A. 2010; 621: 662-669https://doi.org/10.1016/j.nima.2010.05.022
- Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks.Nucl Instrum Meth Phys Res Sect A: Accelerators Spectrometers Detectors Assoc Equip. 2011; 660: 121-129https://doi.org/10.1016/j.nima.2011.08.007
- A survey on Image Data Augmentation for Deep Learning.J Big Data. 2019; 6: 60https://doi.org/10.1186/s40537-019-0197-0
- Measures of the amount of ecologic association between species.Ecology. 1945; 26: 297-302https://doi.org/10.2307/1932409
- Pharmaceutical Statistics Using SAS: A Practical Guide.1 ed. SAS Institute, 2006
- Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.J Digit Imaging. 2019; 32: 582-596https://doi.org/10.1007/s10278-019-00227-x
- Deep learning approaches to biomedical image segmentation.Inf Med Unlocked. 2020; 18: 100297https://doi.org/10.1016/j.imu.2020.100297