Advertisement

Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume?

Published:January 20, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.01.004

      Highlights

      • Cardiorespiratory ITV generated using cardiac-gated and respiratory-gated 4DCT.
      • Cardiorespiratory motions lead to an important increase of target volume in cardiac radioablation.
      • Combining 2 cardiac phases with 10 respiratory phases is a robust approach.
      • Using a single cardiac phase with our without fixed margin is a suboptimal approach.

      Abstract

      Purpose

      To evaluate different approaches for generating a cardiorespiratory ITV for cardiac radioablation.

      Methods

      Four patients with ventricular tachycardia were included in this study. For each patient, cardiac-gated and respiration-correlated 4D-CT scans were acquired. The cardiorespiratory ITV was defined using registrations of the cardiac and respiratory 4D-CT images. Five different approaches, which differed in the number of incorporated cardiac phases (1, 2, 10, or 1 with a fixed 3 mm margin (FM) expansion) and respiratory phases (2 or 10), were evaluated. For each approach, a VMAT treatment plan was simulated. Target coverage (TC) and spill were evaluated geometrically and dosimetrically for each approach.

      Results

      When employing one cardiac phase, the TC did not exceed 85%. Using the two extreme phases of the cardiac and respiratory cycles resulted in a geometric TC < 88% for two patients, with a dosimetric TC of 83% for one patient. An acceptable TC for all patients (geometric TC > 89%, dosimetric TC > 92%) was only achieved when combining 10 respiratory phases with either 2 or 10 cardiac phases or a single cardiac phase with FM. The use of a single cardiac phase with FM combined with 10 respiratory phases lead to a mean geometric and dosimetric spill of 43% and 35%, respectively.

      Conclusion

      For cardiac radioablation, the use of two extreme cardiac phases combined with 10 respiratory phases is a robust approach to generate a cardiorespiratory ITV. The use of a single cardiac phase with or without fixed margin expansion is not recommended based on this study.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cuculich P.S.
        • Schill M.R.
        • Kashani R.
        • Mutic S.
        • Lang A.
        • Cooper D.
        • et al.
        Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia.
        N Engl J Med. 2017; 377: 2325-2336https://doi.org/10.1056/NEJMoa1613773
        • van der Ree M.H.
        • Blanck O.
        • Limpens J.
        • Lee C.H.
        • Balgobind B.V.
        • Dieleman E.M.T.
        • et al.
        Cardiac radioablation—A systematic review.
        Heart Rhythm. 2020; 17: 1381-1392https://doi.org/10.1016/j.hrthm.2020.03.013
        • Lydiard S.
        • Blanck O.
        • Hugo G.
        • O’Brien R.
        • Keall P.
        A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities.
        Int J Radiat Oncol Biol Phys. 2021; 109: 783-800https://doi.org/10.1016/j.ijrobp.2020.10.036
        • Prusator M.T.
        • Samson P.
        • Cammin J.
        • Robinson C.
        • Cuculich P.
        • Knutson N.C.
        • et al.
        Evaluation of motion compensation methods for non-invasive cardiac radioablation of ventricular tachycardia.
        Int J Radiat Oncol Biol Phys. 2021; 111: 1023-1032https://doi.org/10.1016/j.ijrobp.2021.06.035
        • Knybel L.
        • Cvek J.
        • Neuwirth R.
        • Jiravsky O.
        • Hecko J.
        • Penhaker M.
        • et al.
        Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia.
        Rep Pract Oncol Radiother. 2021; 26: 128-137https://doi.org/10.5603/RPOR.a2021.0020
        • Clayton B.
        • Roobottom C.
        • Morgan-Hughes G.
        Assessment of the myocardium with cardiac computed tomography.
        Eur Heart J. 2014; 15: 603-609https://doi.org/10.1093/ehjci/jeu028
        • Robinson C.G.
        • Samson P.P.
        • Moore K.M.S.
        • Hugo G.D.
        • Knutson N.
        • Mutic S.
        • et al.
        Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia.
        Circulation. 2019; 139: 313-321https://doi.org/10.1161/CIRCULATIONAHA.118.038261
        • Knutson N.C.
        • Samson P.P.
        • Hugo G.D.
        • Goddu S.M.
        • Reynoso F.J.
        • Kavanaugh J.A.
        • et al.
        Radiation Therapy Workflow and Dosimetric Analysis from a Phase 1/2 Trial of Noninvasive Cardiac Radioablation for Ventricular Tachycardia.
        Int J Radiat Oncol Biol Phys. 2019; 104: 1114-1123https://doi.org/10.1016/j.ijrobp.2019.04.005
        • Lloyd M.S.
        • Wight J.
        • Schneider F.
        • Hoskins M.
        • Attia T.
        • Escott C.
        • et al.
        Clinical Experience of Stereotactic Body Radiation For Refractory Ventricular Tachycardia in Advanced Heart Failure Patients.
        Heart Rhythm. 2020; 17: 415-422https://doi.org/10.1016/j.hrthm.2019.09.028
        • Scholz E.P.
        • Seidensaal K.
        • Naumann P.
        • André F.
        • Katus H.A.
        • Debus J.
        Risen from the dead: Cardiac stereotactic ablative radiotherapy as last rescue in a patient with refractory ventricular fibrillation storm.
        Heart Rhythm Case Rep. 2019; 5: 329-332https://doi.org/10.1016/j.hrcr.2019.03.004
        • Gianni C.
        • Rivera D.
        • Burkhardt J.D.
        • Pollard B.
        • Gardner E.
        • Maguire P.
        • et al.
        Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia.
        Heart Rhythm. 2020; 17: 1241-1248https://doi.org/10.1016/j.hrthm.2020.02.036
        • Brownstein J.
        • Afzal M.
        • Okabe T.
        • Harfi T.T.
        • Tong M.S.
        • Thomas E.
        • et al.
        Method and Atlas to Enable Targeting for Cardiac Radioablation Employing the American Heart Association Segmented Model.
        Int J Radiat Oncol Biol Phys. 2021; 111: 178-185https://doi.org/10.1016/j.ijrobp.2021.03.051
        • Vercauteren T.
        • Pennec X.
        • Perchant A.
        • Ayache N.
        Diffeomorphic demons: Efficient non-parametric image registration.
        NeuroImage. 2009; 45: S61-S72https://doi.org/10.1016/j.neuroimage.2008.10.040
        • Schwarz M.
        • Cattaneo G.M.
        • Marrazzo L.
        Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review.
        Physica Med. 2017; 36: 126-139https://doi.org/10.1016/j.ejmp.2017.02.011
        • Guckenberger M.
        • Andratschke N.
        • Dieckmann K.
        • Hoogeman M.S.
        • Hoyer M.
        • Hurkmans C.
        • et al.
        ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer.
        Radiother Oncol. 2017; 124: 11-17https://doi.org/10.1016/j.radonc.2017.05.012
        • Bellec J.
        • Arab-Ceschia F.
        • Castelli J.
        • Lafond C.
        • Chajon E.
        ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment 4D cone beam CT.
        Rad Oncol. 2020; 15: 54https://doi.org/10.1186/s13014-020-01496-5
        • Blanck O.
        • Buergy D.
        • Vens M.
        • Eidinger L.
        • Zaman A.
        • Krug D.
        • et al.
        Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA).
        Clin Res Cardiol. 2020; 109: 1319-1332https://doi.org/10.1007/s00392-020-01650-9
        • Krug D.
        • Blanck O.
        • Demming T.
        • Dottermusch M.
        • Koch K.
        • Hirt M.
        • et al.
        Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery): First-in-patient treatment in Germany.
        Strahlenther Onkol. 2020; 196: 23-30https://doi.org/10.1007/s00066-019-01530-w
      1. Neuwirth R, Cvek J, Knybel L, Jiravsky O, Molenda L, Kodaj M, et al. Stereotactic radiosurgery for ablation of ventricular tachycardia. EP Europace 2019;21:1088–95. https://doi.org/10.1093/europace/euz133.

      2. Cvek J, Neuwirth R, Knybel L, Molenda L, Otahal B, Pindor J, et al. Cardiac Radiosurgery for Malignant Ventricular Tachycardia. Cureus 2014. https://doi.org/10.7759/cureus.190.

        • Adler Jr, J.R.
        • Chang S.D.
        • Murphy M.J.
        • Doty J.
        • Geis P.
        • Hancock S.L.
        The Cyberknife: A Frameless Robotic System for Radiosurgery.
        Stereotact Funct Neurosurg. 1997; 69: 124-128https://doi.org/10.1159/000099863
        • Loo B.W.
        • Soltys S.G.
        • Wang L.
        • Lo A.
        • Fahimian B.P.
        • Iagaru A.
        • et al.
        Stereotactic Ablative Radiotherapy for the Treatment of Refractory Cardiac Ventricular Arrhythmia.
        Circ Arrhythm Electrophysiol. 2015; 8: 748-750https://doi.org/10.1161/CIRCEP.115.002765
        • Zeng L.-J.
        • Huang L.-H.
        • Tan H.
        • Zhang H.-C.
        • Mei J.u.
        • Shi H.-F.
        • et al.
        Stereotactic body radiation therapy for refractory ventricular tachycardia secondary to cardiac lipoma: A case report.
        Pacing Clin Electrophysiol. 2019; 42: 1276-1279
      3. Peichl P, Sramko M, Cvek J, Kautzner J. A case report of successful elimination of recurrent ventricular tachycardia by repeated stereotactic radiotherapy: the importance of accurate target volume delineation. Eur Heart J Case Rep 2020:ytaa516. https://doi.org/10.1093/ehjcr/ytaa516.

        • Mayinger M.
        • Kovacs B.
        • Tanadini-Lang S.
        • Ehrbar S.
        • Wilke L.
        • Chamberlain M.
        • et al.
        First magnetic resonance imaging-guided cardiac radioablation of sustained ventricular tachycardia.
        Radiother Oncol. 2020; 152: 203-207https://doi.org/10.1016/j.radonc.2020.01.008
        • Jumeau R.
        • Ozsahin M.
        • Schwitter J.
        • Vallet V.
        • Duclos F.
        • Zeverino M.
        • et al.
        Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation.
        Radiother Oncol. 2018; 128: 189-191https://doi.org/10.1016/j.radonc.2018.04.025
        • Thomas S.J.
        • Evans B.J.
        • Harihar L.
        • Chantler H.J.
        • Martin A.G.R.
        • Harden S.V.
        An evaluation of the mid-ventilation method for the planning of stereotactic lung plans.
        Radiother Oncol. 2019; 137: 110-116https://doi.org/10.1016/j.radonc.2019.04.031
        • Vander Veken L.
        • Dechambre D.
        • Sterpin E.
        • Souris K.
        • Van Ooteghem G.
        • Aldo Lee J.
        • et al.
        Incorporation of tumor motion directionality in margin recipe: The directional MidP strategy.
        Physica Med. 2021; 91: 43-53https://doi.org/10.1016/j.ejmp.2021.10.010
        • Claessen G.
        • Claus P.
        • Delcroix M.
        • Bogaert J.
        • Gerche A.L.
        • Heidbuchel H.
        Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study.
        Am J Physiol-Heart Circulatory Physiol. 2014; 306: H816-H824https://doi.org/10.1152/ajpheart.00752.2013
        • Erdoğan T.
        • Fidan U.
        • Özyiğit G.
        Patient-specific tumor and respiratory monitoring phantom design for quality controls of stereotactic ablative body radiotherapy in lung cancer cases.
        Physica Med. 2021; 90: 40-49https://doi.org/10.1016/j.ejmp.2021.09.003
        • Dieterich S.
        • Green O.
        • Booth J.
        SBRT targets that move with respiration.
        Physica Med. 2018; 56: 19-24https://doi.org/10.1016/j.ejmp.2018.10.021