Advertisement

A multi-modality medical imaging head and neck phantom: Part 1. Design and fabrication

Published:February 19, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.02.010

      Highlights

      • Multi-modality medical imaging Head & Neck phantom for quality assurance, experimental testing and training.
      • Realistic vasculature and micro-vasculature hardware and software model for flow imaging and perfusion scanning.
      • Physiologically realistic pressure-flow dynamics.
      • Tissue equivalent structures.
      • Demonstration for MRI, X-ray CT, Doppler Ultrasound and Nuclear Medicine.

      Abstract

      A novel anthropomorphic head and neck phantom which features the emulation of blood flow and perfusion is proposed. The phantom is helpful in both education and research and contains major blood vessels and a porous silicone elastomer brain compartment with microvascular capillary flow. The porous brain compartment is fabricated by use of a novel cast-moulding-dissolution technique. The skull and vertebra are fabricated by a combination of 3D printing and cast-moulding and are tissue equivalent with CT numbers ranging from 1000 HU to 1200 HU. The elastic structure of the phantom allows ultrasound imaging in the neck region. MRI compatible pressure sensors measure the pressure in the carotic arteries and the jugular veins and pulsatile flow is created by use of a peristaltic pump. The pressure-flow dynamics are physiologically realistic and also matches well with computational simulations of porous Darcy flow. The phantom can be used to optimize and validate MRI pulse sequences and protocols for flow imaging, MR angiography, Arterial Spin Labeling (ASL) and dynamic contrast enhanced (DCE) MRI.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Keenan K.E.
        • Maureen A.
        • Barker A.J.
        • Boss M.A.
        • Cecil K.M.
        • Charles C.
        • Chenevert T.I.
        • Clarke L.
        • Evelhoch J.L.
        • Finn P.
        • Gembris D.
        • Gunter J.L.
        • Hill D.L.G.
        • Jack C.R.
        • Jackson E.F.
        • Liu G.
        • Russek S.E.
        • Sharma S.D.
        • Steckner M.
        • Stupic K.F.
        • Trzasko J.D.
        • Yuan C.
        • Zheng C.
        • Zheng J.
        Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.
        Magn Reson Med. 2018; 79: 48-61https://doi.org/10.1002/mrm.26982
        • Chen C.C.
        • Wan Y.L.
        • Wai Y.Y.
        • Liu H.L.
        Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results.
        J Digit Imaging. 2004; 17: 279-284https://doi.org/10.1007/s10278-004-1023-5
      1. EEC Concerted Research Project, Protocols and test objects for the assessment of MRI equipment., Magnetic Resonance Imaging 6 (2) (1988) 195–9. doi:10.1016/0730-725X(88)90450-X.

        • Edyvean S.
        • Gray J.
        • Heggie J.
        • Hiles P.
        • Homolka P.
        • Le Heron J.
        • McLean D.
        • Mutic S.
        • Ngaile J.
        • Strauss K.
        • Van Dyk J.
        IAEA Human Health Series No 19: Quality Assurance Programme for Computed Tomogaphy: Diagnostic and Therapy Applications. Vol. 19. International Atomic Energy Agency, Vienna2012
        • Bergmann H.
        • Busemann S.E.
        • Cabrejas M.
        • Crassuck T.D.
        • Dondi M.
        • Fraxedas R.
        • Krisanachinda A.
        • Palm S.
        • Shortt K.
        • Stodilka R.Z.
        • Todd-Pokropek A.
        • Wegst A.V.
        • Xie Y.
        • Zimmerman B.E.
        • Zimmerman R.E.
        IAEA Human Health Series No 6: Quality Assurance for SPECT Systems. Vol. 6. International Atomic Energy Agency, Vienna2009
        • Dondi M.
        • El Fakhri G.
        • Fulton R.
        • Gray J.E.
        • McLean I.D.
        • Marengo M.
        • Palm S.
        • Zimmerman B.
        IAEA Human Health Series No 1: Quality Assurance for PET and PET/CT Systems. Vol. 1. International Atomic Energy Agency, Vienna2009
      2. De Deene Y. NMR and MRI of Gels, New Developments in NMR. The Royal Society of Chemistry, 2020https://doi.org/10.1039/9781788013178
        • Price R.R.
        • Axel L.
        • Morgan T.
        • Newman R.
        • Perman W.
        • Schneiders N.
        • et al.
        Report No. 028 - Quality Assurance Methods and Phantoms for Magnetic Resonance Imaging.
        Medical Physics. 1990; 17: 287-295https://doi.org/10.1118/1.596566
        • Jackson E.F.
        • Bronskill M.J.
        • Drost D.J.
        • Och J.
        • Pooley R.A.
        • Sobol W.T.
        • Clarke G.D.
        Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities: Report of MR Subcommittee Task Group 1, Tech. rep.
        AAPM. 2010; https://doi.org/10.37206/101
        • McCollough C.H.
        • Bruesewitz M.R.
        • McNitt-Gray M.F.
        • Ruckdeschel T.
        • Payne J.T.
        • Brink J.A.
        • Zeman R.K.
        The phantom portion of the American College of Radiology (ACR) Computed Tomography (CT) accreditation program: Practical tips, artifact examples, and pitfalls to avoid.
        Med Phys. 2004; 31: 2423-2442https://doi.org/10.1118/1.1769632
        • MacFarlane C.R.
        ACR Accreditation of Nuclear Medicine and PET Imaging Departments.
        J Nuclear Med Technol. 2006; 34: 18-24
        • Och J.G.
        • Clarke G.D.
        • Sobol W.T.
        • Rosen C.W.
        • Mun S.K.
        Acceptance testing of magnetic resonance imaging systems: report of AAPM Nuclear Magnetic Resonance Task Group No.
        6, Med Phys. 1992; 19: 217-229https://doi.org/10.1118/1.596903
        • Colombo P.
        • Baldassarri A.
        • Del Corona M.
        • Mascaro L.
        • Strocchi S.
        Multicenter trial for the set-up of a MRI quality assurance programme.
        Magn Reson Imaging. 2004; 22: 93-101https://doi.org/10.1016/j.mri.2003.04.001
        • Koller C.J.
        • Eatough J.P.
        • Mountford P.J.
        • Frain G.
        A survey of MRI quality assurance programmes.
        Br J Radiol. 2006; 79: 592-596https://doi.org/10.1259/bjr/67655734
        • Ihalainen T.
        • Sipilä O.
        • Savolainen S.
        MRI quality control: six imagers studied using eleven unified image quality parameters.
        Eur Radiol. 2004; 14: 1859-1865https://doi.org/10.1007/s00330-004-2278-4
        • Fedeli L.
        • Benelli M.
        • Busoni S.
        • Belli G.
        • Ciccarone A.
        • Coniglio M.
        • Esposito L.
        • Nocetti R.
        • Sghedoni R.
        • Tarducci L.
        • Altabella E.
        • Belligotti S.
        • Bettarini M.
        • Betti R.
        • Caivano M.
        • Carní A.
        • Chiappiniello S.
        • Cimolai F.
        • Cretti C.
        • Fulcheri C.
        • Gasperi M.
        • Giacometti F.
        • Levrero D.
        • Lizio M.
        • Maieron S.
        • Marzi L.
        • Mascaro S.
        • Mazzocchi S.
        • Morzenti A.
        • Niespolo L.
        • Noferini N.
        • Oberhofer L.
        • Orsingher M.
        • Quattrocchi A.
        • Ricci A.
        • Savini A.
        • Taddeucci C.
        • Testa P.
        • Tortoli G.
        • Gobbi C.
        • Gori L.
        • Bernardi M.
        • Mazzoni Giannelli L.N.
        On the dependence of quantitative diffusion-weighted imaging on scanner system characteristics and acquisition parameters: A large multicenter and multiparametric phantom study with unsupervised clustering analysis.
        Physica Medica. 2021; 85: 98-106https://doi.org/10.1016/j.ejmp.2021.04.020
        • Fellner C.
        • Müller W.
        • Georgi J.
        • Taubenreuther U.
        • Fellner F.A.
        • Kalender W.A.
        A high-resolution phantom for MRI.
        Magn Reson Imaging. 2001; 19: 899-904https://doi.org/10.1016/S0730-725X(01)00397-6
        • Gunter J.L.
        • Bernstein M.A.
        • Borowski B.J.
        • Ward C.P.
        • Britson P.J.
        • Felmlee J.P.
        • Schuff N.
        • Weiner M.
        • Jack C.R.
        Measurement of MRI scanner performance with the ADNI phantom.
        Med Phys. 2009; 36: 2193-2205https://doi.org/10.1118/1.3116776
        • Heck B.
        • Jess-Hempen A.
        • Kreiner H.J.
        • Schöpgens H.
        • Mack A.
        Accuracy and stability of positioning in radiosurgery: long-term results of the Gamma Knife system.
        Med Phys. 2007; 34: 1487-1495https://doi.org/10.1118/1.2710949
        • Mack A.
        • Czempiel H.
        • Kreiner H.J.
        • Durr G.
        • Wowra B.
        Quality assurance in stereotactic space.
        A system test for verifying the accuracy of aim in radiosurgery, Med Phys. 2002; 29: 561-568https://doi.org/10.1118/1.1463062
        • Calusi S.
        • Arilli C.
        • Mussi E.
        • Puggelli L.
        • Casati M.
        • Compagnucci A.
        • Marrazzo L.
        • Talamonti C.
        • Zani M.
        • Pallotta S.
        In phantom evaluation of targeting accuracy in MRI-based brain radiosurgery.
        Physica Medica. 2021; 85: 158-164https://doi.org/10.1016/j.ejmp.2021.05.014
        • Knight A.
        The Costs and Benefits of Animal Experiments.
        Palgrave Macmillan UK. 2011; https://doi.org/10.1057/9780230306417
        • Bliznakova K.
        • Buliev I.
        • Bliznakov Z.
        Anthropomorphic Phantoms in Image Quality and Patient Dose Optimization.
        IOP Publishing Ltd., London2018 (10.1088/2053-2563/aae197)
        • DeWerd L.A.
        • Kissick M.
        The Phantoms of Medical and Health Physics, Springer Science+Business Media, Madison.
        USA. 2014; https://doi.org/10.1007/978-1-4614-8304-5
        • Fieseler M.
        • Kugel H.
        • Gigengack F.
        • Kösters T.
        • Büther F.
        • Quick H.H.
        • Faber C.
        • Jiang X.
        • Schäfers K.P.
        A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in pet/mri: A preliminary evaluation.
        Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2013; 702: 59-63https://doi.org/10.1016/j.nima.2012.09.039
        • Drangova M.
        • Bowman B.
        • Pelc N.J.
        Physiologic motion phantom for MRI applications.
        J Magnetic Reson Imaging. 1996; 6: 513-518https://doi.org/10.1002/jmri.1880060315
      3. Allard L., Soulez G., Chayer B., Qin Z., Roy D., Cloutier G., A multimodality vascular imaging phantom of an abdominal aortic aneurysm with a visible thrombus, Medical Physics 40 (6) (2013) 63701–10 pages. doi:10.1118/1.4803497.

      4. Carton A.K., Bakic P., Ullberg C., Derand H., Maidment A.D., Development of a physical 3D anthropomorphic breast phantom, Medical Physics 38 (2011) 891 – 896. doi:10.1118/1.3533896.

        • Freed M.
        • Badal A.
        • Jennings R.J.
        • Heras H.
        • Myers K.J.
        • Badano A.
        X ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
        Phys Med Biol. 2011; 56: 3513-3533https://doi.org/10.1088/0031-9155/56/12/005
        • Rickey D.W.
        • Rankin R.
        • Fenster A.
        A velocity evaluation phantom for colour and pulsed doppler instruments.
        Ultrasound in Medicine and Biology. 1992; 18: 479-494https://doi.org/10.1016/0301-5629(92)90088-r
        • Fieremans E.
        • De Deene Y.
        • Delputte S.
        • Ozdemir M.S.
        • Achten E.
        • Lemahieu I.
        The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging.
        Phys Med Biol. 2008; 53: 5405-5419https://doi.org/10.1088/0031-9155/53/19/009
        • Smith S.W.
        • Rinaldi J.E.
        Anthropomorphic cardiac ultrasound phantom.
        IEEE Trans Biomed Eng. 1989; 36: 1055-1058https://doi.org/10.1109/10.40807
        • Browne J.E.
        • Gu C.
        • Fazzio R.T.
        • Fagan A.J.
        • Tradup D.J.
        • Hangriandreou N.J.
        Use of novel anthropomorphic breast ultrasound phantoms for radiology resident education.
        J Am Coll Radiol. 2019; 16: 211-218https://doi.org/10.1016/j.jacr.2018.08.028
        • Alves N.
        • Kim A.
        • Tan J.
        • Hwang G.
        • Javed T.
        • Neagu B.
        • Courtney B.K.
        Cardiac tissue-mimicking ballistic gel phantom for ultrasound imaging in clinical and research applications.
        Ultrasound Med Biol. 2020; 46: 2057-2069https://doi.org/10.1016/j.ultrasmedbio.2020.03.011
        • Amini R.
        • Kartchner J.Z.
        • Stolz L.A.
        • Biffar D.
        • Hamilton A.J.
        • Adhikari S.
        A novel and inexpensive ballistic gel phantom for ultrasound training.
        World J Emerg Med. 2015; 6: 225-228https://doi.org/10.5847/wjem.j.1920-8642.2015.03.012
        • Sultan S.F.
        • Iohom G.
        • Shorten G.
        A novel phantom for teaching and learning ultrasound-guided needle manipulation.
        J Medical Ultrasound. 2013; 21: 152-155https://doi.org/10.1016/j.jmu.2013.08.001
        • Hocking G.
        • Hebard S.
        • Mitchell C.H.
        A Review of the Benefits and Pitfalls of Phantoms in Ultrasound-Guided Regional Anesthesia.
        Regional Anesthesia & Pain Medicine. 2011; 36: 162-170https://doi.org/10.1097/AAP.0b013e31820d4207
      5. De Deene Y., Optical CT scanning for experimental demonstration of medical x-ray CT and SPECT, European Journal of Physics 40 (2) (2019) 024001–21 pages. doi:10.1088/1361-6404/aaf94c.

        • Baldock C.
        • De Deene Y.
        • Doran S.
        • Ibbott G.
        • Jirasek A.
        • Lepage M.
        • McAuley K.B.
        • Oldham M.
        • Schreiner L.J.
        Polymer gel dosimetry.
        Phys Med Biol. 2010; 55: R1-R63https://doi.org/10.1088/0031-9155/55/5/r01
      6. De Deene Y., De Wagter C., Van Duyse B., Derycke S., Mersseman B., De Gersem W., Voet T., Achten E., De Neve W., Validation of mr-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy, Magnetic Resonance in Medicine 43 (2000) 116–125. 10.1002/(sici)1522-2594(200001)43:1<116::aid-mrm14>3.0.co;2-5.

        • Iqbal K.
        • Ibbott G.S.
        • Lafratta R.G.
        • Gifford K.A.
        • Buzdar S.A.
        Dosimetric characterisation of anthropomorphic PRESAGE dosimeter and EBT2 film for partial breast radiotherapy.
        J Radiotherapy Practice. 2018; 17: 96-103https://doi.org/10.1017/S1460396917000450
        • De Deene Y.
        • Skyt P.S.
        • Hill R.
        • Booth J.T.
        Flexydos3d: a deformable anthropomorphic 3d radiation dosimeter: radiation properties.
        Phys Med Biol. 2015; 60: 1543-1563
      7. De Deene Y. and Wheatley M., Dong B., Roberts N., Jelen U., Waddington G., Liney G., Towards real-time 4D radiation dosimetry on an MRI-linac, Physics in Medicine and Biology 65 (22) (2020) 225031–30 pages. doi:10.1088/1361-6560/abb9f7.

      8. 3D Slicer image computing platform, accessed: 2021–11-27.

        • Kikinis R.
        • Pieper S.G.
        • Vosburgh K.G.
        3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support.
        in: Intraoperative Imaging Image-Guided Therapy. Springer, New York2014: 277-289https://doi.org/10.1007/978-1-4614-7657-3_19
        • McCulloug E.C.
        • Holmes T.W.
        Acceptance testing computerized radiation therapy treatment planning systems: Direct utilization of ct scan data.
        Med Phys. 1985; 12: 237-242https://doi.org/10.1118/1.595713
      9. Berger MJ and Hubbell JH and Seltzer SM and Chang J and Coursey JS and Sukumar R and Zucker DS and Olsen K, Xcom: Photon cross sections database (2010). https://www.nist.gov/pml/xcom-photon-cross-sections-database.

        • Zhou H.
        • Keall P.J.
        • Graves E.E.
        A bone composition model for monte carlo x-ray transport simulations.
        Med Phys. 2009; 36: 1008-1018
        • Vandecasteele J.
        • De Deene Y.
        On the validity of 3D polymer gel dosimetry: III. MRI-related error sources.
        Phys Med Biol. 2013; 58: 63-85https://doi.org/10.1088/0031-9155/58/1/63
      10. Wikimedia Commons: Brain Nevit Dilmen, https://commons.wikimedia.org/wiki/File:3DPX-002386_Atrophic_Brain_Nevit_Dilmen.stl, accessed: 2021-11-27.

      11. NIH 3D Print Exchange: Cranial Arteries, https://3dprint.nih.gov/discover/3DPX-002604, accessed: 2021-11-27.

        • Blockley N.P.
        • Jiang L.
        • Gardener A.G.
        • Ludman C.N.
        • Francis S.T.
        • Gowland P.A.
        Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist and Deoxyhemoglobin.
        Magn Reson Med. 2008; 60: 1313-1320https://doi.org/10.1002/mrm.21792
        • Darcy H.
        Les fontaines publiques de la ville de Dijon.
        Libraire des corps impériaux des ponts et chaussées et des mines, Paris1856
      12. COMSOL AB, COMSOL Multiphysics (2013). http://www.comsol.com/.

        • Allen J.S.
        • Damasio H.
        • Grabowski T.J.
        Normal neuroanatomical variation in the human brain: An MRI-volumetric study.
        Am J Phys Anthropology. 2002; 118: 341-358https://doi.org/10.1002/ajpa.10092
        • Steiner L.A.
        • Andrews P.J.D.
        Monitoring the injured brain: ICP and CBF.
        British J Anaesthesia. 2006; 97: 26-38https://doi.org/10.1093/bja/ael110
        • Lassen N.A.
        Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min.
        J Cereb Blood Flow Metab. 1985; 5: 347-349https://doi.org/10.1038/jcbfm.1985.48
        • Wansapura J.P.
        • Holland S.K.
        • Dunn R.S.
        • Ball W.S.
        NMR relaxation times in the human brain at 3.0 Tesla.
        J Magnetic Resonance Imaging. 1999; 9: 531-538https://doi.org/10.1002/(sici)1522-2586(199904)9:4<531::aid-jmri4>3.0.co;2-l
        • Gutteridge S.
        • Ramanathan C.
        • Bowtell R.
        Mapping the absolute value of M0 using dipolar field effects.
        Magnetic Resonance in Medicine. 2002; 47: 871-879https://doi.org/10.1002/mrm.10142
        • Bottomley P.A.
        • Foster T.H.
        • Argersinger R.E.
        • Pfeifer L.M.
        A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age.
        Med Phys. 1984; 11: 425-448https://doi.org/10.1118/1.595535
        • Zhang X.
        • Petersen E.T.
        • Ghariq E.
        • De Vis J.B.
        • Webb A.G.
        • Teeuwisse W.M.
        • Hendrikse J.
        M.J.P. van Osch, In vivo Blood T1 measurements at 1.5 T, 3 T, and 7 T.
        Magnetic Resonance in Medicine. 2013; 70: 1082-1086https://doi.org/10.1002/mrm.24550
        • Zhao J.M.
        • Clingman C.S.
        • Närväinen M.J.
        • Kauppinen R.A.
        • van Zijl C.M.
        Oxygenation and Hematocrit Dependence of Transverse Relaxation Rates of Blood at 3T.
        Magn Reson Med. 2013; 58: 592-596https://doi.org/10.1002/mrm.21342
        • Gomori J.M.
        • Grossman R.I.
        • Yu-Ip C.
        • Asakura T.
        NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity.
        J Computer Assisted Tomography. 1987; 11: 684-690
        • Koning W.
        • de Rotte A.A.J.
        • Bluemink J.J.
        • van der Velden T.A.
        • Luijten P.R.
        • Klomp D.W.J.
        • Zwanenburg J.J.M.
        MRI of the Carotid Artery at 7 Tesla: Quantitative Comparison with 3T.
        J Magnetic Reson Imaging. 2015; 41: 773-780https://doi.org/10.1002/jmri.24601
        • Krämer M.
        • Herzau B.
        • Reichenbach J.R.
        Segmentation and visualization of the human cranial bone by T2 approximation using ultra-short echo time (UTE) magnetic resonance imaging.
        Zeitschrift für Medizinische Physik. 2020; 30: 51-59https://doi.org/10.1016/j.zemedi.2019.06.003
        • Brix G.
        • Schad L.R.
        • Lorenz W.J.
        Evaluation of proton density by magnetic resonance imaging: phantom experiments and analysis of multiple component transverse relaxation.
        Phys Med Biol. 1990; 35: 53-66https://doi.org/10.1088/0031-9155/35/1/006
        • Gold G.E.
        • Han E.
        • Stainsby J.
        • Wright G.
        • Brittain J.
        • Beaulieu C.
        Musculoskeletal MRI at 3.0 T.
        Relaxation Times Image Contrast, Am J f Roentgenol. 2004; 183: 343-351https://doi.org/10.2214/ajr.183.2.1830343
      13. M. Gussoni, F. Greco, M. Mapelli, A. Vezzoli, E. Ranucci, P. Ferruti, L. Zetta, Elastomeric Polymers. 2. NMR and NMR Imaging Characterization of Cross-Linked PDMS, Macromolecules 35 (2002) 1722–1729. doi:10.1021/ma011356d.

        • Kimmich R.
        • Fatkullin N.
        Polymer chain dynamics and NMR.
        Adv Polymer Sci. 2004; 170: 1-113https://doi.org/10.1007/b12766
        • Mauri M.
        • Dibbanti M.K.
        • Calzavara M.
        • Mauri L.
        • Simonutti R.
        • Causin V.
        Time domain nuclear magnetic resonance: a key complementary technique for the forensic differentiation of foam traces.
        Analytical Methods. 2013; 5: 4336https://doi.org/10.1039/c3ay40330k
        • Kucinska-Lipka J.
        • Sinyavsky N.
        • Mershiev I.
        • Kupriyanova G.
        • Haponiuk J.
        Study of Aliphatic Polyurethanes by the Low-Field 1H NMR Relaxometry Method with the Inversion of the Integral Transformation.
        Appl Magn Reson. 2019; 50: 347-356https://doi.org/10.1007/s00723-018-1067-1