Advertisement

A multi-modality medical imaging head and neck phantom: Part 2. Medical imaging

Published:February 23, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.02.009

      Highlights

      • Multi-modality medical imaging Head & Neck phantom for quality assurance, experimental testing and training.
      • Realistic vasculature and micro-vasculature hardware and software model for flow imaging and perfusion scanning.
      • Physiologically realistic pressure-flow dynamics.
      • Tissue equivalent structures.
      • Demonstration for MRI, X-ray CT, Doppler Ultrasound and Nuclear Medicine.

      Abstract

      The head and neck phantom discussed in an accompanying paper (part 1), is imaged with MRI, X-ray CT, PET and ultrasound. MRI scans show a distinct image contrast between the brain compartment and other anatomical regions of the head. The silicone matrix that was used to create a porous brain compartment has a relatively high proton density and a spin–spin relaxation time (T2) that is long enough to provide an MRI signal. While the longitudinal magnetization was found to recover according to a mono-exponential, a bi-exponential decay was observed for the transverse relaxation with a slow T2 relaxation component corresponding to the perfusate and a fast T2 relaxation component corresponding to the silicone. The fraction of the slow T2 relaxation component increases upon perfusion. A dynamic contrast enhanced (DCE) MRI experiment is conducted in which the injection rate of the contrast agent is varied. Parametric DCE maps are created and reveal regional differences in contrast agent kinetics as a result of differences in porosity. The skull, vertebra and the brain compartment are clearly visible on X-ray CT. Dynamic PET scanning has been performed while the carotic arterial input function is monitored by use of a Geiger-Müller counter. Similar regions of perfusion are found in the PET study as in the DCE MRI study. By doping the perfusate with a lipid micelle emulsion, the phantom is applicable for carotic Doppler ultrasound demonstration and validation.

      Graphical abstract

      Keywords

      Abbreviations:

      AIF, cAIF (Arterial Input Function, carotid Arterial Input Function), BW (Receive Bandwidth), Cp (Plasma concentration), DCE (Dynamic Contrast Enhanced), DTI (Diffusion Tensor Imaging), ETM (Extended Tofts Model), FA (Flip Angle), FOV (Field-Of-View), GM (Grey (Brain) Matter), HU (Hounsfield Units), ICA (Internal Carotid), IVIM (IntraVoxel Incoherent Motion), JV (Jugular Vein), Ktrans (Volume transfer coefficient), MIP (Maximum Intensity Profile), MPRAGE (Magnetization Prepared RApid Gradient Echo), MS (Matrix Size), νe, νp (extravascular space volume fraction,plasma space volume fraction), ROI (Region Of Interest), R1, R2 (longitudinal NMR relaxation rate (= 1/T1), tranverse relaxation rate (= 1/T2)), R2f, R2s (transverse NMR relaxation rate of the fast relaxing component, transverse NMR relaxation rate of the slow relaxing component), ρHw (proton density relative to that of water), TSE (Turbo Spin Echo (equivalent to Fast Spin Echo (FSE) and RApid Acquisition with Relaxation Enhancement (RARE))), ΔTE (Echo Time Spacing (time between two successive spin echoes in TSE)), UTE MRI (Ultrashort Echo Time Magnetic Resonance Imaging)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. 3d slicer image computing platform,https://www.slicer.org/, accessed: 2021-05-01.

        • Blockley N.P.
        • Jiang L.
        • Gardener A.G.
        • Ludman C.N.
        • Francis S.T.
        • Gowland P.A.
        Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist and Deoxyhemoglobin.
        Magn Reson Med. 2008; 60: 1313-1320https://doi.org/10.1002/mrm.21792
        • De Deene Y.
        • Van de Walle R.
        • Achten E.
        • De Wagter C.
        Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry.
        Signal Process. 1998; 70: 85-101https://doi.org/10.1016/S0165-1684(98)00115-7
        • Fransson A.
        • Ericsson A.
        • Sperber G.O.
        Dependence on T1 of the echo amplitudes from multiple spin-echo sequences with equidistant echoes: simulation studies.
        Magn Reson Imaging. 1993; 11: 197-205https://doi.org/10.1016/0730-725x(93)90024-8
        • De Deene Y.
        • De Wagter C.
        • De Neve W.
        • Achten E.
        Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: II. Analysis of B1-field inhomogeneity.
        Phys Med Biol. 2000; 45: 1825-1839https://doi.org/10.1088/0031-9155/45/7/308
        • Zimmerman J.R.
        • Brittin W.E.
        Nuclear Magnetic Resonance studies in multiple phase systems: Lifetime of a water molecule in an adsorbing phase on silica gel.
        J Phys Chem. 1957; 61: 1328-1333https://doi.org/10.1021/j150556a015
        • Stalder A.F.
        • Elverfeldt D.V.
        • Paul D.
        • Hennig J.
        • Markl M.
        Variable Echo Time Imaging: Signal Characteristics of 1-M Gadobutrol Contrast Agent at 1.5 and 3T.
        Magn Reson Med. 2008; 59: 113-123https://doi.org/10.1002/mrm.21345
        • Tofts P.S.
        Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.
        J Magn Reson Imaging. 1997; 7: 91-101https://doi.org/10.1002/jmri.1880070113
        • Tofts P.S.
        • Brix G.
        • Buckley D.L.
        • Evelhoch J.L.
        • Henderson E.
        • Knopp M.V.
        • Larsson H.B.W.
        • Lee T.-Y.
        • Mayr N.A.
        • Parker G.J.M.
        • Port R.E.P.
        • Taylor J.
        • Weisskoff R.M.
        Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantitities and symbols.
        J Magn Reson Imaging. 1999; 10: 223-232https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s
        • Keereman V.
        • Fierens Y.
        • Broux T.
        • De Deene Y.
        • Lonneux M.
        • Vandenberghe S.
        MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences.
        J Nucl Med. 2010; 51: 812-818https://doi.org/10.2967/jnumed.109.065425
        • De Naeyer D.
        • De Deene Y.
        • Ceelen W.
        • Segers P.
        • Verdonck P.
        Precision analysis of kinetic modelling estimates in dynamic contrast enhanced MRI.
        Magn Reson Mat Phys Biol Med. 2011; 24: 51-66https://doi.org/10.1007/s10334-010-0235-6
        • Zhao M.
        • Guo L.-L.
        • Huang N.
        • Wu Q.
        • Zhou L.
        • Zhao H.
        • Zhang J.
        • Fu K.
        Quantitative analysis of permeability for glioma grading using dynamic-contrast magnetic resonance imaging.
        Oncol Lett. 2017; 14: 5418-5426https://doi.org/10.3892/ol.2017.6895
        • Ivanidze J.
        • Mackay M.
        • Hoang A.
        • Chi J.M.
        • Cheng K.
        • Aranow C.
        • Volpe B.
        • Diamond B.
        • Sanelli P.C.
        Dynamic Contrast-Enhanced MRI Reveals Unique Blood-Brain Barrier Permeability Characteristics in the Hippocampus in the Normal Brain.
        Am J Neuroradiol. 2019; 40: 408-411https://doi.org/10.3174/ajnr.A5962
        • Calamante F.
        Arterial input function in perfusion MRI: A comprehensive review.
        Prog Nucl Magn Reson Spectrosc. 2013; 74: 1-32https://doi.org/10.1016/j.pnmrs.2013.04.002
        • Fieremans E.
        • De Deene Y.
        • Delputte S.
        • Ozdemir M.S.
        • Achten E.
        • Lemahieu I.
        The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging.
        Phys Med Biol. 2008; 53: 5405-5419https://doi.org/10.1088/0031-9155/53/19/009
        • Fieremans E.
        • De Deene Y.
        • Delputte S.
        • Ozdemir M.S.
        • D’Asseler Y.
        • Vlassenbroeck J.
        • Deblaere K.
        • Achten E.
        • Lemahieu I.
        Simulation and experimental verification of the diffusion in an anisotropic fiber phantom.
        J Magn Reson. 2008; 190: 189-199https://doi.org/10.1016/j.jmr.2007.10.014
        • Boris P.
        • Bundgaard F.
        • Olsen A.
        The CT (Hounsfield unit) number of brain tissue in healthy infants. A new reliable method for detection of possible degenerative disease.
        Child’s Nervous Syst. 1987; 3: 175-177https://doi.org/10.1007/bf00717896
        • Mayer T.E.
        • Hamann G.F.
        • Baranczyk J.
        • Rosengarten B.
        • Klotz E.
        • Wiesmann M.
        • Missler U.
        • Schulte-Altedorneburg G.
        • Brueckmann H.J.
        Dynamic CT Perfusion Imaging of Acute Stroke.
        Am J Neurorad. 2000; 21: 1441-1449
        • König M.
        Brain perfusion CT in acute stroke: current status.
        Eur J Radiol. 2003; 45: S11-S22https://doi.org/10.1016/s0720-048x(02)00359-5
        • Sanchez-Crespo A.
        Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography.
        Appl Radiat Isot. 2013; 76: 55-62https://doi.org/10.1016/j.apradiso.2012.06.034
        • Andreo P.
        • Burns D.T.
        • Nahum A.E.
        • Seuntjens J.
        • Attix F.H.
        Fundamentals of Ionizing Radiation Dosimetry.
        John Wiley and Sons, Weinheim, Germany2017