Highlights
- •Multi-modality medical imaging Head & Neck phantom for quality assurance, experimental testing and training.
- •Realistic vasculature and micro-vasculature hardware and software model for flow imaging and perfusion scanning.
- •Physiologically realistic pressure-flow dynamics.
- •Tissue equivalent structures.
- •Demonstration for MRI, X-ray CT, Doppler Ultrasound and Nuclear Medicine.
Abstract
The head and neck phantom discussed in an accompanying paper (part 1), is imaged with
MRI, X-ray CT, PET and ultrasound. MRI scans show a distinct image contrast between
the brain compartment and other anatomical regions of the head. The silicone matrix
that was used to create a porous brain compartment has a relatively high proton density
and a spin–spin relaxation time (T2) that is long enough to provide an MRI signal. While the longitudinal magnetization
was found to recover according to a mono-exponential, a bi-exponential decay was observed
for the transverse relaxation with a slow T2 relaxation component corresponding to the perfusate and a fast T2 relaxation component corresponding to the silicone. The fraction of the slow T2 relaxation component increases upon perfusion. A dynamic contrast enhanced (DCE)
MRI experiment is conducted in which the injection rate of the contrast agent is varied.
Parametric DCE maps are created and reveal regional differences in contrast agent
kinetics as a result of differences in porosity. The skull, vertebra and the brain
compartment are clearly visible on X-ray CT. Dynamic PET scanning has been performed
while the carotic arterial input function is monitored by use of a Geiger-Müller counter.
Similar regions of perfusion are found in the PET study as in the DCE MRI study. By
doping the perfusate with a lipid micelle emulsion, the phantom is applicable for
carotic Doppler ultrasound demonstration and validation.
Graphical abstract

Graphical Abstract
Keywords
Abbreviations:
AIF, cAIF (Arterial Input Function, carotid Arterial Input Function), BW (Receive Bandwidth), Cp (Plasma concentration), DCE (Dynamic Contrast Enhanced), DTI (Diffusion Tensor Imaging), ETM (Extended Tofts Model), FA (Flip Angle), FOV (Field-Of-View), GM (Grey (Brain) Matter), HU (Hounsfield Units), ICA (Internal Carotid), IVIM (IntraVoxel Incoherent Motion), JV (Jugular Vein), Ktrans (Volume transfer coefficient), MIP (Maximum Intensity Profile), MPRAGE (Magnetization Prepared RApid Gradient Echo), MS (Matrix Size), νe, νp (extravascular space volume fraction,plasma space volume fraction), ROI (Region Of Interest), R1, R2 (longitudinal NMR relaxation rate (= 1/T1), tranverse relaxation rate (= 1/T2)), R2f, R2s (transverse NMR relaxation rate of the fast relaxing component, transverse NMR relaxation rate of the slow relaxing component), ρHw (proton density relative to that of water), TSE (Turbo Spin Echo (equivalent to Fast Spin Echo (FSE) and RApid Acquisition with Relaxation Enhancement (RARE))), ΔTE (Echo Time Spacing (time between two successive spin echoes in TSE)), UTE MRI (Ultrashort Echo Time Magnetic Resonance Imaging)To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
3d slicer image computing platform,https://www.slicer.org/, accessed: 2021-05-01.
- Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist and Deoxyhemoglobin.Magn Reson Med. 2008; 60: 1313-1320https://doi.org/10.1002/mrm.21792
- Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry.Signal Process. 1998; 70: 85-101https://doi.org/10.1016/S0165-1684(98)00115-7
- Dependence on T1 of the echo amplitudes from multiple spin-echo sequences with equidistant echoes: simulation studies.Magn Reson Imaging. 1993; 11: 197-205https://doi.org/10.1016/0730-725x(93)90024-8
- Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: II. Analysis of B1-field inhomogeneity.Phys Med Biol. 2000; 45: 1825-1839https://doi.org/10.1088/0031-9155/45/7/308
- Nuclear Magnetic Resonance studies in multiple phase systems: Lifetime of a water molecule in an adsorbing phase on silica gel.J Phys Chem. 1957; 61: 1328-1333https://doi.org/10.1021/j150556a015
- Variable Echo Time Imaging: Signal Characteristics of 1-M Gadobutrol Contrast Agent at 1.5 and 3T.Magn Reson Med. 2008; 59: 113-123https://doi.org/10.1002/mrm.21345
- Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.J Magn Reson Imaging. 1997; 7: 91-101https://doi.org/10.1002/jmri.1880070113
- Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantitities and symbols.J Magn Reson Imaging. 1999; 10: 223-232https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s
- MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences.J Nucl Med. 2010; 51: 812-818https://doi.org/10.2967/jnumed.109.065425
- Precision analysis of kinetic modelling estimates in dynamic contrast enhanced MRI.Magn Reson Mat Phys Biol Med. 2011; 24: 51-66https://doi.org/10.1007/s10334-010-0235-6
- Quantitative analysis of permeability for glioma grading using dynamic-contrast magnetic resonance imaging.Oncol Lett. 2017; 14: 5418-5426https://doi.org/10.3892/ol.2017.6895
- Dynamic Contrast-Enhanced MRI Reveals Unique Blood-Brain Barrier Permeability Characteristics in the Hippocampus in the Normal Brain.Am J Neuroradiol. 2019; 40: 408-411https://doi.org/10.3174/ajnr.A5962
- Arterial input function in perfusion MRI: A comprehensive review.Prog Nucl Magn Reson Spectrosc. 2013; 74: 1-32https://doi.org/10.1016/j.pnmrs.2013.04.002
- The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging.Phys Med Biol. 2008; 53: 5405-5419https://doi.org/10.1088/0031-9155/53/19/009
- Simulation and experimental verification of the diffusion in an anisotropic fiber phantom.J Magn Reson. 2008; 190: 189-199https://doi.org/10.1016/j.jmr.2007.10.014
- The CT (Hounsfield unit) number of brain tissue in healthy infants. A new reliable method for detection of possible degenerative disease.Child’s Nervous Syst. 1987; 3: 175-177https://doi.org/10.1007/bf00717896
- Dynamic CT Perfusion Imaging of Acute Stroke.Am J Neurorad. 2000; 21: 1441-1449
- Brain perfusion CT in acute stroke: current status.Eur J Radiol. 2003; 45: S11-S22https://doi.org/10.1016/s0720-048x(02)00359-5
- Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography.Appl Radiat Isot. 2013; 76: 55-62https://doi.org/10.1016/j.apradiso.2012.06.034
- Fundamentals of Ionizing Radiation Dosimetry.John Wiley and Sons, Weinheim, Germany2017
Article info
Publication history
Published online: February 23, 2022
Accepted:
February 9,
2022
Received:
February 8,
2022
Identification
Copyright
Crown Copyright © 2022 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica e Sanitaria. All rights reserved.