Advertisement

Establishment of national diagnostic reference levels for percutaneous coronary interventions (PCIs) in Thailand

Published:February 24, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.02.013

      Highlights

      • A large study of 22,737 Percutaneous coronary interventions in 76 Cath labs.
      • Established diagnostic reference level for lesions of different complexities.
      • Type C lesions found to have significantly higher doses than type B or A lesions.
      • Trans-radial approach showed lower doses than transfemoral approach.

      Abstract

      Purpose

      To establish national diagnostic reference levels (DRLs) for percutaneous coronary intervention (PCI) in Thailand for lesions of different complexity.

      Methods

      Radiation dose quantity as kerma-area-product (KAP) and cumulative air-kerma at reference point (CAK) from 76 catheterization labs in 38 hospitals in PCI registry of Thailand was transferred online to central data management. Sixteen months data (May 2018 to August 2019) was analyzed. We also investigated role of different factors that influence radiation dose the most.

      Results

      Analysis of 22,737 PCIs resulted in national DRLs for PCI of 91.3 Gy.cm2 (KAP) and 1360 mGy (CAK). The NDRLs for KAP for type C, B2, B1 and A lesions were 106.8, 82.6, 67.9, and 45.3 Gy.cm2 respectively and for CAK, 1705, 1247, 962, and 790 mGy respectively. Thus, as compared to lesion A, lesion C had more than double the dose and B2 had nearly 1.6 times and B1 had 1.2 times CAK. Our DRL values are lower than other Asian countries like Japan and Korea and are in the middle range of Western countries. University hospital had significantly higher dose than private or public hospital possibly because of higher load of complex procedures in university hospitals and trainees performing the procedures. Transradial approach showed lower doses than transfemoral approach.

      Conclusions

      This large multi-centric study established DRLs for PCIs which can act as reference for future studies. A hallmark of our study is establishment of reference levels for coronary lesions classified as per ACC/AHA and thus for different complexities.

      Keywords

      Abbreviations:

      DRL (diagnostic reference levels), NDRL (national diagnostic reference levels), KAP (Kerma-area-product), CAK (cumulative air-kerma), PCI (percutaneous coronary intervention), CTO (chronic total occlusion), ICRP (International Commission on Radiological Protection), IQR (Interquartile range (covering 25th to 75th percentiles of the data)), CI (confidence interval)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Matsubara K.
        • Lertsuwunseri V.
        • Srimahachota S.
        • Krisanachinda A.
        • Tulvatana W.
        • Khambhiphant B.
        • et al.
        Eye lens dosimetry and the study on radiation cataract in interventional cardiologists.
        Phys Medica. 2017; 44: 232-235https://doi.org/10.1016/j.ejmp.2017.10.007
        • Rehani M.M.
        • Ortiz-Lopez P.
        Radiation effects in fluoroscopically guided cardiac interventions-keeping them under control.
        Int J Cardiol. 2006; 109: 147-151https://doi.org/10.1016/j.ijcard.2005.06.015
        • Srimahachota S.
        • Udayachalerm W.
        • Kupharang T.
        • Sukwijit K.
        • Krisanachinda A.
        • Rehani M.
        Radiation skin injury caused by percutaneous coronary intervention, report of 3 cases.
        Int J Cardiol. 2012; 154: e31-e33https://doi.org/10.1016/j.ijcard.2011.05.016
        • Rehani M.M.
        • Srimahachota S.
        Skin injuries in interventional procedures.
        Radiat Prot Dosimetry. 2011; 147: 8-12https://doi.org/10.1093/rpd/ncr257
        • Tsapaki V.
        • Rehani M.M.
        I perform more than 100 interventional procedures every year but have never seen radiation-induced skin injury: Am I missing something?.
        Am J Roentgenol. 2014; 203: W462-W463https://doi.org/10.2214/AJR.13.11765
        • Jaschke W.
        • Bartal G.
        • Martin C.J.
        • Vano E.
        Unintended and Accidental Exposures, Significant Dose Events and Trigger Levels in Interventional Radiology.
        Cardiovasc Intervent Radiol. 2020; 43: 1114-1121https://doi.org/10.1007/s00270-020-02517-2
        • Kostova-Lefterova D.
        • Vassileva J.
        • Rehani M.M.
        Lessons from two cases of radiation induced skin injuries in fluoroscopic procedures in Bulgaria.
        J Radiol Prot. 2017; 37: 938-946https://doi.org/10.1088/1361-6498/aa8ce7
        • Li X.
        • Hirsch J.A.
        • Rehani M.M.
        • Ganguli S.
        • Yang K.
        • Liu B.
        Radiation Effective Dose Above 100 mSv From Fluoroscopically Guided Intervention: Frequency and Patient Medical Condition.
        Am J Roentgenol. 2020; 215: 433-440https://doi.org/10.2214/AJR.19.22227
      1. Rehani M, Miller D, Baliyan V. High dose fluoroscopically guided procedures in patients: radiation management recommendations for interventionalists. CVIR n.d.

        • Brower C.
        • Rehani M.M.
        Radiation risk issues in recurrent imaging.
        Br J Radiol. 2021; 94: 20210389https://doi.org/10.1259/bjr.20210389
        • Li X.
        • Hirsch J.A.
        • Rehani M.M.
        • Yang K.
        • Liu B.
        Effective Dose Assessment for Patients Undergoing Contemporary Fluoroscopically Guided Interventional Procedures.
        Am J Roentgenol. 2020; 214: 158-170https://doi.org/10.2214/AJR.19.21804
        • Tsapaki V.
        • Maniatis P.N.
        • Magginas A.
        • Voudris V.
        • Patsilinakos S.
        • Vranzta T.
        • et al.
        What are the clinical and technical factors that influence the kerma-area product in percutaneous coronary intervention?.
        Br J Radiol. 2008; 81: 940-945https://doi.org/10.1259/bjr/30604628
        • Cousins C.
        • Miller D.L.
        • Bernardi G.
        • Rehani M.M.
        • Schofield P.
        • Vañó E.
        • et al.
        ICRP publication 120: Radiological Protection in Cardiology.
        Ann ICRP. 2013; 42: 1-125https://doi.org/10.1016/j.icrp.2012.09.001
        • Vañó E.
        • Miller D.L.
        • Martin C.J.
        • Rehani M.M.
        • Kang K.
        • Rosenstein M.
        • et al.
        ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging.
        Ann ICRP. 2017; 46: 1-144https://doi.org/10.1177/0146645317717209
      2. European Commission. COUNCIL DIRECTIVE 2013/59/EURATOM. Basic safety standards for protection against the dangers arising from exposure to ionising radiation,. 2013.

        • Siiskonen T.
        • Ciraj-Bjelac O.
        • Dabin J.
        • Diklic A.
        • Domienik-Andrzejewska J.
        • Farah J.
        • et al.
        Establishing the European diagnostic reference levels for interventional cardiology.
        Phys Medica PM an Int J Devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys. 2018; 54: 42-48https://doi.org/10.1016/j.ejmp.2018.09.012
        • Järvinen J.
        • Sierpowska J.
        • Siiskonen T.
        • Järvinen H.
        • Kiviniemi T.
        • Rissanen T.T.
        • et al.
        CONTEMPORARY RADIATION DOSES IN INTERVENTIONAL CARDIOLOGY: A NATIONWIDE STUDY OF PATIENT DOSES IN FINLAND.
        Radiat Prot Dosimetry. 2019; https://doi.org/10.1093/rpd/ncz041
        • D'helft C.J.
        • Brennan P.C.
        • Mcgee A.M.
        • Mcfadden S.L.
        • Hughes C.M.
        • Winder J.R.
        • et al.
        Potential Irish dose reference levels for cardiac interventional examinations.
        Br J Radiol. 2009; 82: 296-302https://doi.org/10.1259/bjr/14857366
        • Anderson J.
        • Zanardo M.
        • Smyth B.
        • Fox L.
        • Anderson A.
        • Maher M.
        • et al.
        AN INTERVENTIONAL CARDIOLOGY INVESTIGATION: PATIENT EXPOSURE TO RADIATION AND INTER-OPERATOR VARIABILITY IN AN IRISH SETTING.
        Radiat Prot Dosimetry. 2020; 192: 89-96https://doi.org/10.1093/rpd/ncaa201
        • Ubeda C.
        • Miranda P.
        • Vano E.
        Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values.
        Med Phys. 2015; 42: 615-622https://doi.org/10.1118/1.4905116
        • Kottou S.
        • Kollaros N.
        • Plemmenos C.
        • Mastorakou I.
        • Apostolopoulou S.C.
        • Tsapaki V.
        Towards the definition of Institutional diagnostic reference levels in paediatric interventional cardiology procedures in Greece.
        Phys Medica PM an Int J Devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys. 2018; 46: 52-58https://doi.org/10.1016/j.ejmp.2018.01.009
        • Hadid-Beurrier L.
        • Dabli D.
        • Royer B.
        • Demonchy M.
        • Le Roy J.
        Diagnostic reference levels during fluoroscopically guided interventions using mobile C-arms in operating rooms: A national multicentric survey.
        Phys Medica PM an Int J Devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys. 2021; 86: 91-97https://doi.org/10.1016/j.ejmp.2021.05.013
        • Sánchez R.
        • Vañó E.
        • Fernández Soto J.M.
        • Ten J.I.
        • Escaned J.
        • Delgado C.
        • et al.
        Updating national diagnostic reference levels for interventional cardiology and methodological aspects.
        Phys Medica PM an Int J Devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys. 2020; 70: 169-175https://doi.org/10.1016/j.ejmp.2020.01.014
        • Simeonov F.
        • Palov N.
        • Ivanova D.
        • Kostova-Lefterova D.
        • Georgiev E.
        • Zagorska A.
        • et al.
        Web-based platform for patient dose surveys in diagnostic and interventional radiology in Bulgaria: Functionality testing and optimisation.
        Phys Medica PM an Int J Devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys. 2017; 41: 87-92https://doi.org/10.1016/j.ejmp.2017.04.025
        • Schegerer A.
        • Loose R.
        • Heuser L.J.
        • Brix G.
        Diagnostic Reference Levels for Diagnostic and Interventional X-Ray Procedures in Germany: Update and Handling.
        Rofo. 2019; 191: 739-751https://doi.org/10.1055/a-0824-7603
        • Zanca F.
        • Collard C.
        • Alexandre N.
        • Deprez F.
        • Salembier J.P.
        • Henry M.
        • et al.
        Patient exposure data and operator dose in coronary interventional procedures: Impact of body-mass index and procedure complexity.
        Phys Medica. 2020; 76: 38-43
        • Sansanayudh N.
        • Srimahachota S.
        • Chandavi M.
        • Limpijankit T.
        • Kehasukcharoen W.
        Multi-center prospective, nation-wide coronary angioplasty registry in Thailand (Thai PCI Registry): Registry design and rationale.
        J Med Assoc Thai. 2021; 104: 1-8
        • Ryan T.J.
        • Faxon D.P.
        • Gunnar R.M.
        • Kennedy J.W.
        • King 3rd, S.B.
        • Loop F.D.
        • et al.
        Guidelines for percutaneous transluminal coronary angioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transl.
        Circulation. 1988; 78: 486-502https://doi.org/10.1161/01.cir.78.2.486
        • Kim J.S.
        • Lee B.-K.
        • Ryu D.R.
        • Chun K.J.
        • Choi H.-H.
        • Roh Y.
        • et al.
        A MULTICENTRE SURVEY OF LOCAL DIAGNOSTIC REFERENCE LEVELS AND ACHIEVABLE DOSE FOR CORONARY ANGIOGRAPHY AND PERCUTANEOUS TRANSLUMINAL CORONARY INTERVENTION PROCEDURES IN KOREA.
        Radiat Prot Dosimetry. 2019; 187: 407https://doi.org/10.1093/rpd/ncaa016
        • Ishibashi T.
        • Takei Y.
        • Sakamoto H.
        • Yamashita Y.
        • Kato M.
        • Tsukamoto A.
        • et al.
        Nationwide Survey of Medical Radiation Exposure on Cardiovascular Examinations in Japanわが国の循環器血管撮影領域における医療被ばくの実態調査.
        Nihon Hoshasen Gijutsu Gakkai Zasshi. 2020; 76: 64-71https://doi.org/10.6009/jjrt.2020_JSRT_76.1.64
        • Kanda R.
        • Akahane M.
        • Koba Y.
        • Chang W.
        • Akahane K.
        • Okuda Y.
        • et al.
        Developing diagnostic reference levels in Japan.
        Jpn J Radiol. 2021; 39: 307-314https://doi.org/10.1007/s11604-020-01066-5
        • Maccia C.
        • Malchair F.
        • Gobert I.
        • Louvard Y.
        • Lefevre T.
        Assessment of Local Dose Reference Values for Recanalization of Chronic Total Occlusions and Other Occlusions in a High-Volume Catheterization Center.
        Am J Cardiol. 2015; 116: 1179-1184https://doi.org/10.1016/j.amjcard.2015.07.026
        • Bogaert E.
        • Bacher K.
        • Lemmens K.
        • Carlier M.
        • Desmet W.
        • De wagter X.
        • et al.
        A large-scale multicentre study of patient skin doses in interventional cardiology: dose-area product action levels and dose reference levels.
        Br J Radiol. 2009; 82: 303-312https://doi.org/10.1259/bjr/29449648
        • Samara E.T.
        • Aroua A.
        • De Palma R.
        • Stauffer J.-C.
        • Schmidt S.
        • Trueb P.R.
        • et al.
        An audit of diagnostic reference levels in interventional cardiology and radiology: are there differences between academic and non-academic centres?.
        Radiat Prot Dosimetry. 2012; 148: 74-82https://doi.org/10.1093/rpd/ncq600
        • Miller D.L.
        • Hilohi C.M.
        • Spelic D.C.
        Patient radiation doses in interventional cardiology in the U.S.: advisory data sets and possible initial values for U.S. reference levels.
        Med Phys. 2012; 39: 6276-6286https://doi.org/10.1118/1.4754300
        • Simantirakis G.
        • Koukorava C.
        • Kalathaki M.
        • Pafilis C.
        • Kaisas I.
        • Economides S.
        • et al.
        Reference levels and patient doses in interventional cardiology procedures in Greece.
        Eur Radiol. 2013; 23: 2324-2332https://doi.org/10.1007/s00330-013-2813-2
        • Balter S.
        • Miller D.L.
        • Vano E.
        • Ortiz Lopez P.
        • Bernardi G.
        • Cotelo E.
        • et al.
        A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures.
        Med Phys. 2008; 35: 673-680https://doi.org/10.1118/1.2829868
        • Peterzol A.
        • Quai E.
        • Padovani R.
        • Bernardi G.
        • Kotre C.J.
        • Dowling A.
        Reference levels in PTCA as a function of procedure complexity.
        Radiat Prot Dosimetry. 2005; 117: 54-58https://doi.org/10.1093/rpd/nci719
        • Stecker M.S.
        • Balter S.
        • Towbin R.B.
        • Miller D.L.
        • Vañó E.
        • Bartal G.
        • et al.
        Guidelines for patient radiation dose management.
        J Vasc Interv Radiol. 2009; 20: S263-S273https://doi.org/10.1016/j.jvir.2009.04.037
        • Ruiz-Cruces R.
        • Vano E.
        • Carrera-Magariño F.
        • Moreno-Rodriguez F.
        • Soler-Cantos M.M.
        • Canis-Lopez M.
        • et al.
        Diagnostic reference levels and complexity indices in interventional radiology: a national programme.
        Eur Radiol. 2016; 26: 4268-4276https://doi.org/10.1007/s00330-016-4334-2
        • Schegerer A.A.
        • Frija G.
        • Paulo G.
        • Jaschke W.
        • Tsapaki V.
        • Repussard J.
        • et al.
        Radiation dose and diagnostic reference levels for four interventional radiology procedures: results of the prospective European multicenter survey EUCLID.
        Eur Radiol. 2021; 31: 9346-9360https://doi.org/10.1007/s00330-021-08029-y
        • Ng K.-H.
        • Rehani M.M.
        X ray imaging goes digital.
        BMJ. 2006; 333: 765-766https://doi.org/10.1136/bmj.38977.669769.2C
        • Padole A.M.
        • Sagar P.
        • Westra S.J.
        • Lim R.
        • Nimkin K.
        • Kalra M.K.
        • et al.
        Development and validation of image quality scoring criteria (IQSC) for pediatric CT: a preliminary study.
        Insights Imaging. 2019; 10https://doi.org/10.1186/s13244-019-0769-8
        • Sonig A.
        • Setlur Nagesh S.V.
        • Fennell V.S.
        • Gandhi S.
        • Rangel-Castilla L.
        • Ionita C.N.
        • et al.
        A Patient Dose-Reduction Technique for Neuroendovascular Image-Guided Interventions: Image-Quality Comparison Study.
        AJNR Am J Neuroradiol. 2018; 39: 734-741https://doi.org/10.3174/ajnr.A5552
        • Grosser O.S.
        • Wybranski C.
        • Kupitz D.
        • Powerski M.
        • Mohnike K.
        • Pech M.
        • et al.
        Improvement of image quality and dose management in CT fluoroscopy by iterative 3D image reconstruction.
        Eur Radiol. 2017; 27: 3625-3634https://doi.org/10.1007/s00330-017-4754-7
        • Padole A.
        • Ali Khawaja R.D.
        • Kalra M.K.
        • Singh S.
        CT radiation dose and iterative reconstruction techniques.
        AJR Am J Roentgenol. 2015; 204: W384-W392https://doi.org/10.2214/AJR.14.13241
        • Kalra M.K.
        • Rehani M.M.
        Five-star rating system for acceptable quality and dose in CT.
        Eur Radiol. 2021; 31: 9161-9163https://doi.org/10.1007/s00330-021-08112-4
        • NCD Risk Factor Collaboration
        Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants.
        Lancet (London, England). 2016; 387: 1377-1396https://doi.org/10.1016/S0140-6736(16)30054-X
        • Moghadam N.
        • Lecomte R.
        • Mercure S.
        • Rehani M.M.
        • Nassiri M.A.
        Simplified size adjusted dose reference levels for adult CT examinations: A regional study.
        Eur J Radiol. 2021; 142: 109861https://doi.org/10.1016/j.ejrad.2021.109861
        • Seuri R.
        • Rehani M.M.
        • Kortesniemi M.
        How tracking radiologic procedures and dose helps: experience from Finland.
        AJR Am J Roentgenol. 2013; 200: 771-775https://doi.org/10.2214/AJR.12.10112
        • Arellano R.S.
        • Yang K.
        • Rehani M.M.
        Analysis of patients receiving ≥ 100 mSv during a computed tomography intervention.
        Eur Radiol. 2021; 31: 3065-3070https://doi.org/10.1007/s00330-020-07458-5
        • Rehani M.M.
        • Heil J.
        • Baliyan V.
        Multicentric study of patients receiving 50 or 100 mSv in a single day through CT imaging- Frequency determination and imaging protocols involved.
        Eur Radiol. 2021; 31: 6612-6620
        • Rehani M.M.
        Old enemy, new threat: You can’t solve today’s problems with yesterday’s solution.
        J Radiol Prot. 2021; 41: 452-458https://doi.org/10.1088/1361-6498/abe2ba
        • Kachelrieß M.
        • Rehani M.M.
        Is it possible to kill the radiation risk issue in computed tomography?.
        Phys Medica. 2020; 71: 176-177https://doi.org/10.1016/j.ejmp.2020.02.017
        • Silver E.H.
        • Shulman S.D.
        • Rehani M.M.
        Innovative monochromatic x-ray source for high-quality and low-dose medical imaging.
        Med Phys. 2021; 48: 1064-1078https://doi.org/10.1002/mp.14677