Advertisement

Evaluation of kV-CBCT based 3D dose calculation accuracy and its validation using delivery fluence derived dose metrics in Head and Neck Cancer

Published:February 22, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.02.014

      Abstract

      Purpose

      The purpose of this study is to evaluate the dosimetric impact of Hounsfield unit (HU) variations in kilovoltage cone-beam computed tomography (kV-CBCT) based 3D dose calculation accuracy in the treatment planning system and its validation using measured treatment delivery dose (MTDD) derived dose metrics for Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) plans in Head and Neck (HN) Cancer.

      Methods

      CBCT dose calculation accuracy was evaluated for 8 VMAT plans on inhomogeneous phantom and 40 VMAT and IMRT plans of HN Cancer patients and validated using ArcCHECK diode array MTDD derived 3D dose metric on CT and CBCT.

      Results

      The mean percentage dose difference between CBCT and CT in TPS (ΔD(CBCT-CT)TPS) and 3DVH (ΔD(CBCT-CT)3DVH) were compared for the corresponding evaluation dose metrics (D98%, D95%, D50%, D2%, Dmax, D1cc, D0.03cc, Dmean) of all PTVs and OARs in phantom and patients. ΔD(CBCT-CT)TPS and ΔD(CBCT-CT)3DVH for all evaluation dose points of all PTVs and OARs were less than 2.55% in phantom and 2.4% in HN patients. The Pearson correlation coefficient (r) between ΔD(CBCT-CT)TPS and ΔD(CBCT-CT)3DVH for all dose points in all PTVs and OARs showed a strong to moderate correlation in phantom and patients with p < 0.001.

      Conclusions

      This study evaluated and validated the potential feasibility of kV-CBCT for treatment plan 3D dose reconstruction in clinical decision making for Adaptive radiotherapy on CT in Head and Neck cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • De Los Santos J.
        • Popple R.
        • Agazaryan N.
        • Bayouth J.E.
        • Bissonnette J.-P.
        • Bucci M.K.
        • et al.
        Image Guided Radiation Therapy (IGRT) technologies for radiation therapy localization and delivery.
        Int. J. Radiat. Oncol. Biol. Phys. 2013; 87: 33-45https://doi.org/10.1016/j.ijrobp.2013.02.021
        • Bortfeld T.
        IMRT: a review and preview.
        Phys. Med. Biol. 2006; 51: R363-R379https://doi.org/10.1088/0031-9155/51/13/r21
        • Otto K.
        Volumetric modulated arc therapy: IMRT in a single gantry arc.
        Med. Phys. 2008; 35: 310-317https://doi.org/10.1118/1.2818738
        • Chung J.B.
        • Kim J.S.
        • Ha S.W.
        • Ye S.-J.
        Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline.
        Radiat. Oncol. 2011; 6https://doi.org/10.1186/1748-717X-6-27
        • Barker J.L.
        • Garden A.S.
        • Ang K.K.
        • O'Daniel J.C.
        • Wang H.e.
        • Court L.E.
        • et al.
        Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and neck cancer using an integrated ct/linear accelerator system.
        Int. J. Radiat. Oncol. Biol. Phys. 2004; 59: 960-970https://doi.org/10.1016/j.ijrobp.2003.12.024
        • Heming Lu
        • Lin Hui
        • Feng Guosheng
        • Shu Liuyang
        • Pang Qiang
        • Cheng Jinjian
        • et al.
        Interfractional and intrafractional errors assessed by daily cone-beam computed tomography in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy: a prospective study.
        J. Radiat. Res. 2012; 53: 954-960https://doi.org/10.1093/jrr/rrs041
        • Jaffray D.A.
        Image-guided radiotherapy: from current concept to future perspectives.
        Nat. Rev. Clin. Oncol. 2012; 9: 688-699https://doi.org/10.1038/nrclinonc.2012.194
        • Boda-Heggemann J.
        • Lohr F.
        • Wenz F.
        • Flentje M.
        • Guckenberger M.
        kV Cone-Beam CT-Based IGRT A Clinical ReviewkV-Cone-beam-CT-basierte bildgeführte Strahlentherapie – ein klinischer Überblick.
        Strahlenther. Onkol. 2011; 187: 284-291https://doi.org/10.1007/s00066-011-2236-4
        • Srinivasan K.
        • Mohammadi M.
        • Shepherd J.
        Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review.
        Pol. J. Radiol. 2014; 79: 181-193https://doi.org/10.12659/pjr.890745
        • Kong V.C.
        • Marshall A.
        • Chan H.B.
        Cone beam computed tomography: the challenges and strategies in its application for dose accumulation.
        J. Med. Imaging Radiat. Sci. 2016; 47: 92-97https://doi.org/10.1016/j.jmir.2015.09.012
        • Knap M.M.
        • Hoffmann L.
        • Nordsmark M.
        • Vestergaard A.
        Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients.
        Acta Oncol. 2010; 49: 1077-1084https://doi.org/10.3109/0284186X.2010.498434
        • Ho K.F.
        • Marchant T.
        • Moore C.
        • Webster G.
        • Rowbottom C.
        • Penington H.
        • et al.
        Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy.
        Int. J. Radiat. Oncol. Biol. Phys. 2012; 82: e375-e382https://doi.org/10.1016/j.ijrobp.2011.07.004
        • Lee L.
        • Le Q.-T.
        • Xing L.
        Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file.
        Int. J. Radiat. Oncol. Biol. Phys. 2008; 70: 634-644https://doi.org/10.1016/j.ijrobp.2007.09.054
        • Yoo S.
        • Yin F.-F.
        Dosimetric feasibility of cone-beam ct-based treatment planning compared to ct-based treatment planning.
        Int. J. Radiat. Oncol. Biol. Phys. 2006; 66: 1553-1561https://doi.org/10.1016/j.ijrobp.2006.08.031
        • Ding G.X.
        • Duggan D.M.
        • Coffey C.W.
        • Deeley M.
        • Hallahan D.E.
        • Cmelak A.
        • et al.
        A study on adaptive IMRT treatment planning using kV cone-beam CT.
        Radiother. Oncol. 2007; 85: 116-125https://doi.org/10.1016/j.radonc.2007.06.015
        • Qian J.
        • Lee L.
        • Liu W.u.
        • Chu K.
        • Mok E.
        • Luxton G.
        • et al.
        Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files.
        Phys. Med. Biol. 2010; 55: 3597-3610https://doi.org/10.1088/0031-9155/55/13/002
        • Yang Y.
        • Schreibmann E.
        • Li T.
        • Wang C.
        • Xing L.
        Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation.
        Phys. Med. Biol. 2007; 52: 685-705https://doi.org/10.1088/0031-9155/52/3/011
        • Utena Y.
        • Takatsu J.
        • Sugimoto S.
        • Sasai K.
        Trajectory log analysis and cone‐beam CT‐based daily dose calculation to investigate the dosimetric accuracy of intensity‐modulated radiotherapy for gynecologic cancer.
        J. Appl. Clin. Med. Phys. 2021; 22: 108-117https://doi.org/10.1002/acm2.13163
        • Rong Y.i.
        • Smilowitz J.
        • Tewatia D.
        • Tomé W.A.
        • Paliwal B.
        Dose calculation on kV cone beam CT images: an investigation of the HU-density conversion stability and dose accuracy using the site-specific calibration.
        Med. Dosim. 2010; 35: 195-207https://doi.org/10.1016/j.meddos.2009.06.001
        • Hatton J.
        • McCurdy B.
        • Greer P.B.
        Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy.
        Phys. Med. Biol. 2009; 54: N329-N346https://doi.org/10.1088/0031-9155/54/15/N01
        • Barateau A.
        • Garlopeau C.
        • Cugnyet A.
        • Figueiredo B.H.D.
        • Dupin C.
        • Caron J.
        • et al.
        Dose calculation accuracy of different image value to density tables for cone-beam CT planning in head & neck and pelvic localizations.
        Phys. Med. 2015; 30: 1-6https://doi.org/10.1016/j.ejmp.2014.12.007
        • Barateau A.
        • De Crevoisier R.
        • Largent A.
        • Mylona E.
        • Perichon N.
        • Castelli J.
        • et al.
        Comparison of CBCT-based dose calculation methods in head and neck cancer radiotherapy: from Hounsfield unit to density calibration curve to deep learning.
        Med. Phys. 2020; 47: 4683-4693https://doi.org/10.1002/mp.14387
        • Richter A.
        • Hu Q.
        • Steglich D.
        • Baier K.
        • Wilbert J.
        • Guckenberger M.
        • et al.
        Investigation of the usability of cone beam CT data sets for dose calculation.
        Radiat. Oncol. 2008; 3https://doi.org/10.1186/1748-717X-3-42
        • de Smet M.
        • Schuring D.
        • Nijsten S.
        • Verhaegen F.
        Accuracy of dose calculations on kV cone beam CT images of lung cancer patients.
        Med. Phys. 2016; 43: 5934-5941https://doi.org/10.1118/1.4964455
        • Tang Bin
        • Ma Jiabao
        • Jinghui Xu
        • Li Jie
        • Kang Shengwei
        • Wang Pei
        • et al.
        Feasibility of using calibrated cone-beam computed tomography scans to validate the heart dose in left breast post-mastectomy radiotherapy.
        J. Int. Med. Res. 2020; 48: 1-10https://doi.org/10.1177/0300060520929168
        • Fotina I.
        • Hopfgartner J.
        • Stock M.
        • Steininger T.
        • Lütgendorf-Caucig C.
        • Georg D.
        Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques.
        Radiother. Oncol. 2012; 104: 249-256https://doi.org/10.1016/j.radonc.2012.06.007
        • Chen S.
        • Le Q.
        • Mutaf Y.
        • Wei L.u.
        • Elizabeth Nichols M.
        • Yig Byong Yong
        • et al.
        Feasibility of CBCT-based dose with a patient-specific stepwise HU-to-density curve to determine time of replanning.
        J. Appl. Clin. Med. Phys. 2017; 20https://doi.org/10.1002/acm2.12127
        • Irmak S.
        • Georg D.
        • Lechner W.
        Comparison of CBCT conversion methods for dose calculation in the head and neck region.
        Z. Med. Phys. 2020; 30: 289-299https://doi.org/10.1016/j.zemedi.2020.05.007
        • Niu T.
        • Sun M.
        • Star-Lack J.
        • Gao H.
        • Fan Q.
        • Zhu L.
        Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
        Med. Phys. 2010; 37: 5395-5406https://doi.org/10.1118/1.3483260
        • Wang B.
        • Wang D.Q.
        • Lin M.S.
        • Lu S.P.
        • Zhang J.
        • Chen L.i.
        • et al.
        Accumulation of the delivered dose based on cone-beam CT and deformable image registration for non-small cell lung cancer treated with hypofractionated radiotherapy.
        BMC Cancer. 2020; 20https://doi.org/10.1186/s12885-020-07617-3
        • Giacometti V.
        • Hounsell A.H.
        • McGarry C.K.
        A review of dose calculation approaches with cone beam CT in photon and proton therapy.
        Phys. Med. 2020; 76: 243-276https://doi.org/10.1016/j.ejmp.2020.06.017
        • Nelms B.E.
        • Zhen H.
        • Tomé W.A.
        Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors.
        Med. Phys. 2011; 38: 1037-1044https://doi.org/10.1118/1.3544657
        • Zhen H.
        • Nelms B.E.
        • Tomé W.A.
        Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA.
        Med. Phys. 2011; 38: 5477-5489https://doi.org/10.1118/1.3633904
        • Nelms B.E.
        • Opp D.
        • Robinson J.
        • Wolf T.K.
        • Zhang G.
        • Moros E.
        • et al.
        VMAT QA: measurement-guided 4D dose reconstruction on a patient.
        Med. Phys. 2012; 39: 4228-4238https://doi.org/10.1118/1.4729709
        • Tyagi N.
        • Yang K.
        • Yan D.i.
        Comparing measurement-derived (3DVH) and machine log file-derived dose reconstruction methods for VMAT QA in patient geometries.
        J. Appl. Clin. Med. Phys. 2014; 15: 54-66https://doi.org/10.1120/jacmp.v15i4.4645
        • Saito M.
        • Kadoya N.
        • Sato K.
        • Ito K.
        • Dobashi S.
        • Takeda K.
        • et al.
        Comparison of DVH-based plan verification methods for VMAT: ArcCHECK-3DVH system and dynalog-based dose reconstruction.
        J. Appl. Clin. Med. Phys. 2017; 18: 206-214https://doi.org/10.1002/acm2.12123
        • Van Uytven E.
        • Van Beek T.
        • McCowan P.M.
        • Chytyk-Praznik K.
        • Greer P.B.
        • McCurdy B.M.
        Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm.
        Med. Phys. 2015; 42: 6945-6954https://doi.org/10.1118/1.4935199
        • Chendi A.
        • Botti A.
        • Orlandi M.
        • Sghedoni R.
        • Iori M.
        • Cagni E.
        EPID-based 3D dosimetry for pre-treatment FFF VMAT stereotactic body radiotherapy plan verification using dosimetry CheckTM.
        Phys. Med. 2021; 81: 227-236https://doi.org/10.1016/j.ejmp.2020.12.014
        • Opp D.
        • Nelms B.E.
        • Zhang G.
        • Stevens C.
        • Feygelman V.
        Validation of measurement-guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom.
        J. Appl. Clin. Med. Phys. 2013; 14: 70-84https://doi.org/10.1120/jacmp.v14i4.4154
        • Nakaguchi Y.
        • Ono T.
        • Onitsuka R.
        • Maruyama M.
        • Shimohigashi Y.
        • Kai Y.
        Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system.
        Med. Dosim. 2016; 41: 205-211https://doi.org/10.1016/j.meddos.2016.03.001
        • Nakaguchi Y.
        • Oono T.
        • Maruyama M.
        • Shimohigashi Y.
        • Kai Y.
        • Nakamura Y.
        Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector.
        Radiol. Phys. Technol. 2018; 11: 165-173
        • Agnew A.
        • Agnew C.E.
        • Grattan M.W.D.
        • Hounsell A.R.
        • McGarry C.K.
        Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries.
        Phys. Med. Biol. 2014; 59: N49-N63https://doi.org/10.1088/0031-9155/59/9/N49
        • Agnew C.E.
        • Irvine D.M.
        • McGarry C.K.
        Correlation of phantom-based and log file patient-specific QA with complexity scores for VMAT.
        J. Appl. Clin. Med. Phys. 2014; 15: 204-216https://doi.org/10.1120/jacmp. v15i6.4994
      1. The Phantom Laboratory Catphan® 604 Manual 2015. Green- wish, NY: The Phantom Laboratory, Inc.

        • Thomas S.J.
        Relative electron density calibration of CT scanners for radiotherapy treatment planning.
        Br. J. Radiol. 1999; 72: 781-786https://doi.org/10.1259/bjr.72.860.10624344
        • Keeling V.P.
        • Ahmad S.
        • Algan O.
        • Jin H.
        Dependency of planned dose perturbation (PDP) on the spatial resolution of MapCHECK 2 detectors.
        J. Appl. Clin. Med. Phys. 2014; 15: 100-117
        • Lin M.-H.
        • Koren S.
        • Veltchev I.
        • Li J.
        • Wang L.u.
        • Price R.A.
        • et al.
        Measurement comparison and Monte Carlo analysis for volumetric-modulated arc therapy (VMAT) delivery verification using the ArcCHECK dosimetry system.
        J. Appl. Clin. Med. Phys. 2013; 14: 220-233https://doi.org/10.1120/jacmp.v14i2.3929
        • Mao W.
        • Liu C.
        • Gardner S.J.
        • Elshaikh M.
        • Aref I.
        • Lee J.K.
        • et al.
        How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions?.
        J. Appl. Clin. Med. Phys. 2021; 22: 37-48https://doi.org/10.1002/acm2.13328
        • Schroder L.
        • Stankovic U.
        • Remeijer P.
        • Sonke J.-J.
        Evaluating the impact of cone-beam computed tomography scatter mitigation strategies on radiotherapy dose calculation accuracy.
        Phys. Imaging Radiat. Oncol. 2019; 10: 35-40https://doi.org/10.1016/j.phro.2019.04.001
        • Washio H.
        • Ohira S.
        • Funama Y.
        • Ueda Y.
        • Isono M.
        • Inui S.
        • et al.
        Accuracy of dose calculation on iterative CBCT for head and neck radiotherapy.
        Phys. Med. 2021; 86: 106-112https://doi.org/10.1016/j.ejmp.2021.05.027
        • Shrinivasan K.
        • Mohammadi M.
        • Shepherd J.
        Cone Beam Computed Tomography for adaptive radiotherapy treatment planning.
        J. Med. Biol. Eng. 2014; 34: 377-385https://doi.org/10.5405/jmbe.1372