Highlights
- •The Shape features are the most reproducible features in all of the tests.
- •The changes in features extracted when the beam was off were smaller than from when the beam was on.
- •Intraobserver reliability of features was high compared with other influences.
- •Motion substantially impacted the robustness of the features.
Abstract
Purpose
Materials and method
Result
Conclusion
Keywords
Abbreviations:
MR-Linac (magnetic resonance image guided linear accelerator), CCC (concordance correlation coefficient), CT (computed tomography), PET (positron emission tomography), MRI (magnetic resonance imaging), ART (adaptive radiation therapy), ROI (region of interest), IBSI (Image biomarker standardization initiative), GLRLM (gray-level run-length matrix), GLCM (gray level cooccurrence matrix), GLSZM (gray level size zone matrix), NGTDM (neighboring gray tone difference matrix), GLDM (gray level dependence matrix), DSC (Dice similarity coefficient)Introduction
- Shi L.
- Rong Y.
- Daly M.
- et al.
- Shi L.
- Rong Y.
- Daly M.
- et al.
Methods and materials

Phantom and MR parameters


The definition of CCC and selected tumor volume dependence features
Robustness | The threshold values of CCC |
---|---|
Excellent | CCC > 0.9 |
Good | 0.75 < CCC ≤ 0.9 |
Medium | 0.5 < CCC ≤ 0.75 |
Bad | CCC ≤ 0.5 |
Phantom Test-Retest MR images
Feature extraction
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [published correction appears in Nat Commun. 2014;5:4644. Cavalho, Sara [corrected to Carvalho, Sara]]. Nat Commun. 2014;5:4006. Published 2014 Jun 3. doi:10.1038/ncomms5006.
Range refers to the number of discrete values (16, 32, 64, 128), I represents the intensity of the original image, and n is the set of pixels in the ROI.
Intraobserver effect
Thickness effect
Radiation effect

Motion effect
Results
Phantom Test-Retest MR images
Intraobserver effect
Thickness effect
Radiation effect
Motion effect


Discussion
Declaration of Competing Interest
Acknowledgements
Appendix A. Supplementary data
- Supplementary data 1
References
- Unusual primary lung tumors: a radiologic-pathologic overview.Radiographics. 2002; 22: 601-619https://doi.org/10.1148/radiographics.22.3.g02ma25601
- New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.J Natl Cancer Inst. 2000; 92: 205-216https://doi.org/10.1093/jnci/92.3.205
- Artificial intelligence: deep learning in oncological radiomics and challenges of interpretability and data harmonization.Phys Med. 2021; 83: 108-121https://doi.org/10.1016/j.ejmp.2021.03.009
- Beyond imaging: the promise of radiomics.Phys Med. 2017; 38: 122-139https://doi.org/10.1016/j.ejmp.2017.05.071
- Exploring variability in CT characterization of tumors: a preliminary phantom study.Transl Oncol. 2014; 7 (Published 2014 Feb 1): 88-93https://doi.org/10.1593/tlo.13865
- Quantitative assessment of variation in CT parameters on texture features: pilot study using a nonanatomic phantom.AJNR Am J Neuroradiol. 2017; 38: 981-985https://doi.org/10.3174/ajnr.A5139
- Measuring computed tomography scanner variability of radiomics features.Invest Radiol. 2015; 50: 757-765https://doi.org/10.1097/RLI.0000000000000180
- Exploring feature-based approaches in PET images for predicting cancer treatment outcomes.Pattern Recognit. 2009; 42: 1162-1171https://doi.org/10.1016/j.patcog.2008.08.011
- Radiomics in PET: principles and applications.Clin Transl Imaging. 2014; 2: 269-276https://doi.org/10.1007/s40336-014-0064-0
- Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study.Invest Radiol. 2019; 54: 221-228https://doi.org/10.1097/RLI.0000000000000530
- Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.Radiother Oncol. 2017; 123: 363-369https://doi.org/10.1016/j.radonc.2017.04.016
- Cone-beam CT radiomics features might improve the prediction of lung toxicity after SBRT in stage I NSCLC patients.Thorac Cancer. 2020; 11: 964-972https://doi.org/10.1111/1759-7714.13349
- Cone-beam computed tomography-based delta-radiomics for early response assessment in radiotherapy for locally advanced lung cancer.Phys Med Biol. 2020; 65015009https://doi.org/10.1088/1361-6560/ab3247
- Feature selection methodology for longitudinal cone-beam CT radiomics.Acta Oncol. 2017; 56: 1537-1543https://doi.org/10.1080/0284186X.2017.1350285
- MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy.Radiology. 2018; 287: 833-843https://doi.org/10.1148/radiol.2018172300
- MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively.J Magn Reson Imaging. 2019; 49: 1420-1426https://doi.org/10.1002/jmri.26531
- CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma.Radiother Oncol. 2015; 114: 345-350https://doi.org/10.1016/j.radonc.2015.02.015
- Cone-beam computed tomography-based radiomics in prostate cancer: a mono-institutional study.Strahlenther Onkol. 2020; 196: 943-951https://doi.org/10.1007/s00066-020-01677-x
- Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?.Med Phys. 2015; 42: 6784-6797https://doi.org/10.1118/1.4934826
Gu J, Zhu J, Qiu Q, et al. The Feasibility Study of Megavoltage Computed Tomographic (MVCT) Image for Texture Feature Analysis. Front Oncol. 2018;8:586. Published 2018 Dec 5. doi:10.3389/fonc.2018.00586.
- Deep learning methods to generate synthetic CT from MRI in radiotherapy: a literature review.Phys Med. 2021; 89: 265-281https://doi.org/10.1016/j.ejmp.2021.07.027
- Radiomics feature robustness as measured using an MRI phantom.Sci Rep. 2021; 11 (Published 2021 Feb 17): 3973https://doi.org/10.1038/s41598-021-83593-3
- New developments in MRI: system characterization, technical advances and radiotherapy applications.Phys Med. 2021; 90: 50-52https://doi.org/10.1016/j.ejmp.2021.09.001
- Impact of rescanning and repositioning on radiomic features employing a multi-object phantom in magnetic resonance imaging.Sci Rep. 2021; 11: 14248https://doi.org/10.1038/s41598-021-93756-x
- PETER PHAN: an MRI phantom for the optimisation of radiomic studies of the female pelvis.Phys Med. 2020; 71: 71-81https://doi.org/10.1016/j.ejmp.2020.02.003
- A multicenter study on radiomic features from T2 -weighted images of a customized MR pelvic phantom setting the basis for robust radiomic models in clinics.Magn Reson Med. 2021; 85: 1713-1726https://doi.org/10.1002/mrm.28521
- Radiomics in diffusion data: a test-retest, inter- and intra-reader DWI phantom study.Clin Radiol. 2020; 75: 798.e13-798.e22https://doi.org/10.1016/j.crad.2020.06.024
- Assessment of image quality and scatter and leakage radiation of an integrated MR-LINAC system.Med Phys. 2018; 45: 1204-1209https://doi.org/10.1002/mp.12767
- MRI commissioning of 1.5T MR-linac systems - a multi-institutional study.Radiother Oncol. 2019; 132: 114-120https://doi.org/10.1016/j.radonc.2018.12.011
- A concordance correlation coefficient to evaluate reproducibility.Biometrics. 1989; 45: 255-268
McBride GB, “A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient,” NIW A Client Report No. HAM2005–062 (2005), pp. 1–14.
- Vulnerabilities of radiomic signature development: the need for safeguards.Radiother Oncol. 2019; 130: 2-9https://doi.org/10.1016/j.radonc.2018.10.027
- T2w-MRI signal normalization affects radiomics features reproducibility.Med Phys. 2020; 47: 1680-1691https://doi.org/10.1002/mp.14038
- Statistical validation of image segmentation quality based on a spatial overlap index.Acad Radiol. 2004; 11: 178-189https://doi.org/10.1016/s1076-6332(03)00671-8
- The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping.Radiology. 2020; 295: 328-338https://doi.org/10.1148/radiol.2020191145
- Radiomics: the facts and the challenges of image analysis.Eur Radiol Exp. 2018; 2: 36https://doi.org/10.1186/s41747-018-0068-z
- Texture based feature extraction methods for content based medical image retrieval systems.Biomed Mater Eng. 2014; 24: 3055-3062https://doi.org/10.3233/BME-141127
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [published correction appears in Nat Commun. 2014;5:4644. Cavalho, Sara [corrected to Carvalho, Sara]]. Nat Commun. 2014;5:4006. Published 2014 Jun 3. doi:10.1038/ncomms5006.
- 3D Variation in delineation of head and neck organs at risk.Radiat Oncol. 2012; 7: 32https://doi.org/10.1186/1748-717X-7-32
- Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer.Radiother Oncol. 1999; 53: 247-255https://doi.org/10.1016/s0167-8140(99)00143-7
- Comparison of Jaccard, Dice, Cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm.Int J Innov Eng Technol. 2013; 2: 202-205
- Technical Note: experimental results from a prototype high-field inline MRI-linac.Med Phys. 2016; 43: 5188https://doi.org/10.1118/1.4961395
- Artificial intelligence in magnetic resonance guided radiotherapy: medical and physical considerations on state of art and future perspectives.Phys Med. 2021; 85: 175-191https://doi.org/10.1016/j.ejmp.2021.05.010
- The ViewRay system: magnetic resonance-guided and controlled radiotherapy.Semin Radiat Oncol. 2014; 24: 196-199https://doi.org/10.1016/j.semradonc.2014.02.008
- Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.Radiother Oncol. 2019; 135: 107-114https://doi.org/10.1016/j.radonc.2019.03.001
Shiri, I., Abdollahi, H., Shaysteh, S. & Rabi Mahdavi, S. Test-Retest Reproducibility and Robustness Analysis of Recurrent Glioblastoma MRI Radiomics Texture Features. Iranian Journal of Radiology Special iss, doi:10.5812/iranjradiol.48035.
- Making radiotherapy more efficient with FAIR data.Phys Med. 2021; 82: 158-162https://doi.org/10.1016/j.ejmp.2021.01.083
- Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study.Eur J Radiol. 2006; 57: 96-101https://doi.org/10.1016/j.ejrad.2005.07.006
- Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy.Phys Med. 2020; 80: 186-192https://doi.org/10.1016/j.ejmp.2020.11.002
- Test-retest data for radiomics feature stability analysis: generalizable or study-specific?.Tomography. 2016; 2: 361-365https://doi.org/10.18383/j.tom.2016.00208
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy