Advertisement
Research Article| Volume 96, P140-148, April 2022

Radiopharmaceutical imaging based on 3D-CZT Compton camera with 3D-printed mouse phantom

  • Feng Tian
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
    Search for articles by this author
  • Changran Geng
    Correspondence
    Corresponding author.
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
    Search for articles by this author
  • Zhiyang Yao
    Affiliations
    Department of Engineering Physics, Tsinghua University, Beijing 100084, People’s Republic of China
    Search for articles by this author
  • Renyao Wu
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
    Search for articles by this author
  • Jianfeng Xu
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China

    JYAMS PET Research and Development Limited, Nanjing 211100, People’s Republic of China
    Search for articles by this author
  • Fei Cai
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China

    JYAMS PET Research and Development Limited, Nanjing 211100, People’s Republic of China
    Search for articles by this author
  • Xiaobin Tang
    Affiliations
    Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
    Search for articles by this author
Published:March 11, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.03.005

      Highlights

      • A methodology for radiopharmaceutical imaging based on 3D-CZT camera is proposed.
      • The event selection method and image reconstruction algorithm are optimized.
      • Performance of radiopharmaceutical imaging with 3D-CZT are preliminarily studied.

      Abstract

      Purpose

      The study proposes the use of three-dimensional CdZnTe Compton camera (3D-CZT CC) for radiopharmaceutical imaging and investigates the influence factors using a 3D-printed mouse phantom.

      Methods

      The event selection method and image reconstruction algorithm are optimized by Monte Carlo simulations and mouse phantom experiments.

      Results

      Simulation results show that the intrinsic energy resolution and spatial resolution of 3D-CZT cause a certain deviation in the calculated Compton scattering angle and Compton axis. Such deviation causes the imaging quality to deteriorate. By selecting events whose distance between Compton and photoelectronic interactions are larger than 10 mm, the mean deviation of the Compton axis could be reduced to less than 10%. Using the ordered origin ensemble algorithm with resolution recovery, the artifacts around organs where the radiopharmaceutical was placed are reduced, and the quality of the reconstruction results are improved compared to the results with simple back projection and origin ensembles algorithms. The phantom study shows that the 3D-CZT CC imaging device could visualize the radiopharmaceuticals distribution by 15 min detection.

      Conclusions

      Through the analysis of this study, the feasibility of 3D-CZT CC for in-vivo distribution measurement of radiopharmaceuticals is demonstrated, and the quality of reconstruction result has been improved.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Filippou V.
        • Tsoumpas C.
        Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound.
        Med Phys. 2018; 45: 740-760https://doi.org/10.1002/mp.13058
        • Russo P.
        • Di Lillo F.
        • Corvino V.
        • Frallicciardi P.M.
        • Sarno A.
        • Mettivier G.
        CdTe compact gamma camera for coded aperture imaging in radioguided surgery.
        Phys Medica. 2020; 69: 223-232https://doi.org/10.1016/j.ejmp.2019.12.024
        • Geng C.
        • Ai Y.
        • Tang X.
        • Shu D.
        • Gong C.
        • Du M.
        • et al.
        Quantum dots enhanced Cerenkov luminescence imaging.
        Nucl Sci Tech. 2019; 30: 1-5https://doi.org/10.1007/s41365-019-0599-x
        • Del Guerra A.
        • Belcari N.
        State-of-the-art of PET, SPECT and CT for small animal imaging.
        Nucl Instrum Meth A. 2007; 583: 119-124https://doi.org/10.1016/j.nima.2007.08.187
        • Kishimoto A.
        • Kataoka J.
        • Koide A.
        • Sueoka K.
        • Iwamoto Y.
        • Taya T.
        • et al.
        Development of a compact scintillator-based high-resolution Compton camera for molecular imaging.
        Nucl Instrum Meth A. 2017; 845: 656-659
        • Motomura S.
        • Kanayama Y.
        • Haba H.
        • Watanabe Y.
        • Enomoto S.
        Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera.
        J Anal Atom Spectrom. 2008; 23: 1089-1092https://doi.org/10.1039/B802964D
        • Tian F.
        • Geng C.-R.
        • Tang X.-B.
        • Shu D.-Y.
        • Ye H.-F.
        • Bortolussi S.
        • et al.
        Analysis of influencing factors on the method for determining boron concentration and dose through dual prompt gamma detection.
        Nucl Sci Tech. 2021; 32https://doi.org/10.1007/s41365-021-00873-3
        • Fontana M.
        • Dauvergne D.
        • Létang J.M.
        • Ley J.-L.
        • Testa É.
        Compton camera study for high efficiency SPECT and benchmark with Anger system.
        Phys Med Biol. 2017; 62: 8794https://doi.org/10.1088/1361-6560/aa926a
        • Amato E.
        • Auditore L.
        • Campennì A.
        • Minutoli F.
        • Cucinotta M.
        • Sindoni A.
        • et al.
        A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
        Phys Medica. 2017; 38: 119-121
        • Kabuki S.
        • Hattori K.
        • Kohara R.
        • Kunieda E.
        • Kubo A.
        • Kubo H.
        • et al.
        Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging.
        Nucl Instrum Meth A. 2007; 580: 1031-1035
        • Roellinghoff F.
        • Richard M.-H.
        • Chevallier M.
        • Constanzo J.
        • Dauvergne D.
        • Freud N.
        • et al.
        Design of a Compton camera for 3D prompt-γ imaging during ion beam therapy.
        Nucl Instrum Meth A. 2011; 648: S20-S23https://doi.org/10.1016/j.nima.2011.01.069
        • Gong C.-H.
        • Tang X.-B.
        • Shu D.-Y.
        • Yu H.-Y.
        • Geng C.-R.
        Optimization of the Compton camera for measuring prompt gamma rays in boron neutron capture therapy.
        Appl Radiat Isot. 2017; 124: 62-67
        • Watanabe S.
        • Tanaka T.
        • Nakazawa K.
        • Mitani T.
        • Oonuki K.
        • Takahashi T.
        • et al.
        A Si/CdTe semiconductor compton camera.
        IEEE T Nucl Sci. 2005; 52: 2045-2051
        • Kataoka J.
        • Kishimoto A.
        • Nishiyama T.
        • Fujita T.
        • Takeuchi K.
        • Kato T.
        • et al.
        Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays.
        Nucl Instrum Meth A. 2013; 732: 403-407
        • Turecek D.
        • Jakubek J.
        • Trojanova E.
        • Sefc L.
        Single layer Compton camera based on Timepix3 technology.
        J Instrum. 2020; 15: C01014https://doi.org/10.1088/1748-0221/15/01/C01014
        • Liprandi S.
        • Mayerhofer M.
        • Aldawood S.
        • Binder T.
        • Dedes G.
        • Miani A.
        • et al.
        Sub-3mm spatial resolution from a large monolithic LaBr 3 (Ce) scintillator.
        CDBME. 2017; 3: 655-659
      1. Sakai M, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Torikai K, et al. In vivo simultaneous imaging with 99mTc and 18F using a Compton camera. Phys Med Biol 2018;63:205006. 10.1088/1361-6560/aae1d1.

      2. Golnik C, Bemmerer D, Enghardt W, Fiedler F, Hueso-González F, Pausch G, et al. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—a benchmark setup for prompt gamma-ray imaging devices. J Instrum 2016;11:P06009. 10.1088/1748-0221/11/06/P06009.

        • He Z.
        • Li W.
        • Knoll G.F.
        • Wehe D.K.
        • Berry J.
        • Stahle C.M.
        3-D position sensitive CdZnTe gamma-ray spectrometers.
        Nucl Instrum Meth A. 1999; 422: 173-178https://doi.org/10.1016/S0168-9002(98)00950-4
        • Feng Z.
        • Zhong H.
        • Dan X.
        Analysis of detector response using 3-D position-sensitive CZT gamma-ray spectrometers.
        IEEE T Nucl Sci. 2005; 51: 3098-3104https://doi.org/10.1109/TNS.2004.839078
        • Liu Y.
        • Fu J.
        • Li Y.
        • Li Y.
        • Ma X.
        • Zhang L.
        Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector.
        Nucl Sci Tech. 2018; 29: 1-11https://doi.org/10.1007/s41365-018-0483-0
        • Shy D.
        • Xia J.
        • He Z.
        Artifacts in high-energy Compton imaging with 3-D position-sensitive CdZnTe.
        IEEE T Nucl Sci. 2020; 67: 1920-1928https://doi.org/10.1109/TNS.2020.3005834
      3. Draeger E, Mackin D, Peterson S, Chen H, Avery S, Beddar S, et al. 3D prompt gamma imaging for proton beam range verification. Phys Med Biol 2018;63:035019. https://doi.org/10.1088/1361-6560/aaa203.

        • Peterson S.W.
        • Robertson D.
        • Polf J.
        Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy.
        Phys Med Biol. 2010; 55: 6841-6856https://doi.org/10.1088/0031-9155/55/22/015
        • Sitek A.
        Reconstruction of emission tomography data using origin ensembles.
        IEEE T Med Imaging. 2010; 30: 946-956https://doi.org/10.1109/TMI.2010.2098036
        • Andreyev A.
        • Celler A.
        • Ozsahin I.
        • Sitek A.
        Resolution recovery for Compton camera using origin ensemble algorithm.
        Med Phys. 2016; 43: 4866-4876https://doi.org/10.1118/1.4959551
        • Yao Z.
        • Xiao Y.
        • Chen Z.
        • Wang B.
        • Hou Q.
        Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy.
        Sci Rep-UK. 2019; 9: 1-15https://doi.org/10.1038/s41598-018-37623-2
        • Geronimo G.D.
        • Vernon E.
        • Ackley K.
        • Dragone A.
        • Fried J.
        • Connor P.O.
        • et al.
        Readout ASIC for 3D position-sensitive detectors.
        IEEE Nuclear Science Symposium Conference Record. 2007; 2007: 32-41https://doi.org/10.1109/NSSMIC.2007.4436284
        • De Geronimo G.
        • Vernon E.
        • Ackley K.
        • Dragone A.
        • Fried J.
        • O'Connor P.
        • et al.
        Readout ASIC for 3D position-sensitive detectors.
        IEEE T Nucl Sci. 2008; 55: 1593-1603
        • Dogdas B.
        • Stout D.
        • Chatziioannou A.F.
        • Leahy R.M.
        Digimouse: a 3D whole body mouse atlas from CT and cryosection data.
        Phys Med Biol. 2007; 52: 577-587
        • Ordonez C.E.
        • Chang W.
        • Bolozdynya A.
        Angular uncertainties due to geometry and spatial resolution in Compton cameras.
        IEEE T Nucl Sci. 1999; 3: 1142-1147https://doi.org/10.1109/23.790848
        • Kim Y.
        • Lee T.
        • Lee W.
        Radiation measurement and imaging using 3D position sensitive pixelated CZT detector.
        Nucl Eng Technol. 2019; 51: 1417-1427https://doi.org/10.1016/j.net.2019.03.009
        • Cui J.
        • Chinn G.
        • Levin C.S.
        Fast and accurate 3D Compton cone projections on GPU using CUDA.
        IEEE Nuclear Science Symposium Conference Record: IEEE. 2011; 2011: 2572-2575https://doi.org/10.1109/NSSMIC.2011.6152694
        • Muñoz E.
        • Ros A.
        • Borja-Lloret M.
        • Barrio J.
        • Dendooven P.
        • Oliver J.F.
        • et al.
        Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection.
        Sci Rep-UK. 2021; 11https://doi.org/10.1038/s41598-021-88812-5
        • Ohno M.
        • Fukazawa Y.
        • Mizuno T.
        • Takahashi H.
        • Tanaka Y.
        • Ji K.
        • et al.
        Event-selection technique for the multi-layer Si− CdTe Compton camera onboard Hitomi.
        Nucl Instrum Meth A. 2019; 924: 327-331https://doi.org/10.1016/j.nima.2018.09.114
        • Zoglauer A.
        • Boggs S.E.
        Application of neural networks to the identification of the compton interaction sequence in compton imagers.
        IEEE Nuclear Science Symposium Conference Record: IEEE. 2007; 2007: 4436-4441https://doi.org/10.1109/NSSMIC.2007.4437096
        • Kabuki S.
        • Kimura H.
        • Amano H.
        • Nakamoto Y.
        • Tanimori T.
        Electron-tracking Compton gamma-ray camera for small animal and phantom imaging.
        Nucl Instrum Meth A. 2010; 251: 606-607https://doi.org/10.1016/j.nima.2010.03.085