Advertisement

Determination of ion recombination and polarity effects for the PTW Advanced Markus ionization chamber in synchrotron based scanned proton and carbon ion beams

Published:March 14, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.03.007

      Highlights

      • Ion recombination, polarity and charge multiplication effect.
      • Carbon ions radiotherapy.
      • High dose per fraction proton eye treatments.
      • Dosimetry with small-gap plane-parallel ionization chamber.

      Abstract

      The aim of this work was the investigation of the ion recombination and polarity factors (ksat ad kpol) for a PTW Advanced Markus ionization chamber exposed to proton and carbon ion beams at the Centro Nazionale di Adroterapia Oncologica. Measurements with protons were specifically dedicated for ocular treatments, in the low energy range and for small, collimated scanning fields. For both protons and carbon ions, several measurements were performed by delivering a 2D single energy layer of 3x3 cm2 and homogeneous, biologically-optimized SOBPs. Data were collected at different depths in water, by varying the voltage values of the ionization chamber and for two different dose rates (the nominal one and one reduced to 20% of it). The ksat-values were determined from extrapolation of the saturation curves. Furthermore kpol-values were calculated using the recommendations from the International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398 Code of Practice.
      Results showed that the Advanced Markus performs optimally in this clinical scenario characterized by small treatment volumes and high dose gradients although for both particle types, but particularly for carbon ions, a charge multiplication effect up to 1.7% occurs at voltage higher than 150 V.
      For protons, both the ion recombination and polarity corrections were always smaller than 0.3%, for all the analysed cases and adopted dose rates, so not affecting the dosimetric measurements for clinical routine. For carbon ions the polarity effect can be neglected while ion recombination has to be carefully calculated and cannot be neglected since corrections even higher than 1% can be found, especially at high LET measuring points.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Andreo P.
        • Burns D.T.
        • Hohlfeld K.
        • Huq M.S.
        • Kanai T.
        • Laitano F.
        • Smyth V.G.
        • Vynckier S.
        Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water.
        IAEA Technical Report Series 398. IAEA, 2000
        • Report I.C.R.U.
        78. Prescribing, Recording and Reporting Proton Beam Therapy.
        J ICRU. 2007; 7
        • Report I.C.R.U.
        93. Prescribing, recording and reporting light ion beam therapy.
        J ICRU. 2016; 16
        • Nisbet A.
        • Thwaites D.I.
        Polarity and ion recombination correction factors for ionization chambers employed in electron beam dosimetry.
        Phys Med Biol. 1998; 43: 435-443https://doi.org/10.1088/0031-9155/43/2/016
        • Pearce J.
        • Thomas R.
        • DuSautoy A.
        The characterization of the Advanced Markus ionization chamber for use in reference electron dosimetry in the UK.
        Phys Med Biol. 2006; 51: 473-483https://doi.org/10.1088/0031-9155/51/3/001
        • Petersson K.
        • Jaccard M.
        • Germond J.F.
        • Buchillier T.
        • Bochud F.
        • Bourhis J.
        • et al.
        High dose-per-pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber.
        Med Phys. 2017; 44: 1157-1167https://doi.org/10.1002/mp.12111
        • Jaffé G.
        Zur theorie der ionisation in kolonnen.
        Ann Phys. 1913; Lpz 347: 303-344https://doi.org/10.1002/andp.19133471205
        • Kara-Michailova E.
        • Lea D.E.
        The interpretation of ionization measurements in gases at high pressures.
        Math Proc Cambridge Philos Soc. 1940; 36: 101-126https://doi.org/10.1017/S0305004100017059
        • Kanai T.
        • Sudo M.
        • Matsufuji N.
        • Futami Y.
        Initial recombination in a parallel-plate ionization chamber exposed to heavy ions.
        Phys Med Biol. 1998; 43: 3549-3558https://doi.org/10.1088/0031-9155/43/12/012
        • Rossomme S.
        • Hopfgartner J.
        • Lee N.D.
        • Delor A.
        • Thomas R.A.
        • Romano F.
        • et al.
        Ion recombination correction in carbon ion beams.
        Med Phys. 2016; 43: 4198-4208https://doi.org/10.1118/1.4953637
        • Rossomme S.
        • Horn J.
        • Brons S.
        • Jäkel O.
        • Mairani A.
        • Ciocca M.
        • et al.
        Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers.
        Phys Med Biol. 2017; 62: 5365-5382
        • Mirandola A.
        • Magro G.
        • Maestri D.
        • Mairani A.
        • Mastella E.
        • Molinelli S.
        • et al.
        Determination of ion recombination and polarity effect correction factors for a plane-parallel ionization Bragg peak chamber under proton and carbon ion pencil beams.
        Phys Med Biol. 2019; 64095010https://doi.org/10.1088/1361-6560/ab0db4
        • Boag J.W.
        Ionization measurements at very high intensities—Part I.
        British J Radiol. 1950; 274: 601-611https://doi.org/10.1259/0007-1285-23-274-601
        • Boag J.W.
        The recombination correction for an ionisation chamber exposed to pulsed radiation ina’swept beam’technique.
        I Theory Phys Med Biol. 1982; 27: 201-211https://doi.org/10.1088/0031-9155/27/2/001
        • Boag J.W.
        • Wilson T.
        The saturation curve at high ionization intensity.
        Br J Appl Phys. 1952; 3: 222-229https://doi.org/10.1088/0508-3443/3/7/305
        • Boag J.W.
        • Currant J.
        Current collection and ionic recombination in small cylindrical ionization chambers exposed to pulsed radiation.
        Br J Radiol. 1980; 53: 471-478https://doi.org/10.1259/0007-1285-53-629-471
      1. De Almeida C E, Niatel M T. Comparison between IRD and BIPM exposure and air-kerma standards for cobalt gamma rays. Report BIPM-86/12 1986 (Sevres: Bureau International des Poids et Mesures);1–19.

        • Palmans H.
        • Thomas R.
        • Kacperek A.
        Ion recombination correction in the Clatterbridge Centre of Oncology clinical proton beam.
        Phys Med Biol. 2006; 51: 903-917https://doi.org/10.1088/0031-9155/51/4/010
        • Palmans H.
        • Verhaegen F.
        • Denis J.-M.
        • Vynckier S.
        Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam.
        Phys Med Biol. 2002; 47: 2895-2905https://doi.org/10.1088/0031-9155/47/16/305
        • Rossomme S.
        • Delor A.
        • Lorentini S.
        • Vidal M.
        • Brons S.
        • Jaekel O.
        • et al.
        Three-voltage linear method to determine ion recombination in proton and light-ion beams.
        Phys Med Biol. 2020; 65045015https://doi.org/10.1088/1361-6560/ab3779
        • Rossomme S.
        • Lorentini S.
        • Vynckier S.
        • Delor A.
        • Vidal M.
        • Lourenço A.
        • et al.
        Correction of the measured current of a small-gap plane-parallel ionization chamber in proton beams in the presence of charge multiplication.
        Z Med Phys. 2021; 31: 192-202
        • Kuess P.
        • Böhlen T.T.
        • Lechner W.
        • Elia A.
        • Georg D.
        • Palmans H.
        Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry.
        Phys Med Biol. 2017; 62: 9189-9206https://doi.org/10.1088/1361-6560/aa955e
        • Liszka M.
        • Stolarczyk L.
        • Kłodowska M.
        • Kozera A.
        • Krzempek D.
        • Mojżeszek N.
        • et al.
        Ion recombination and polarity correction factors for a plane–parallel ionization chamber in a proton scanning beam.
        Med Phys. 2018; 45: 391-401https://doi.org/10.1002/mp.12668
        • Christensen J.B.
        • Almhagen E.
        • Stolarczyk L.
        • Liszka M.
        • Hernandez G.G.
        • Bassler N.
        • et al.
        Mapping initial and general recombination in scanning proton pencil beams.
        PhysMed Biol. 2020; 65115003https://doi.org/10.1088/1361-6560/ab8579
        • Ciocca M.
        • Magro G.
        • Mastella E.
        • Mairani A.
        • Mirandola A.
        • Molinelli S.
        • et al.
        Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility.
        Med Phys. 2019; 46: 1852-1862https://doi.org/10.1002/mp.13389
        • Makishima H.
        • Yasuda S.
        • Isozaki Y.
        • Kasuya G.
        • Okada N.
        • Miyazaki M.
        • et al.
        Single fraction carbon ion radiotherapy for colorectal cancer liver metastasis: A dose escalation study.
        Cancer Sci. 2019; https://doi.org/10.1111/cas.13872
        • Yasuda S.
        • Kato H.
        • Imada H.
        • Isozaki Y.
        • Kasuya G.
        • Makishima H.
        • et al.
        Long-term results of high-dose 2-fraction carbon ion radiation therapy for hepatocellular carcinoma.
        Adv Radiat Oncol. 2020; 5: 196-203
        • Haberer T.
        • Becher W.
        • Schardt D.
        • Kraft G.
        Magnetic scanning system for heavy ion therapy.
        Nuclear Instrum Methods Phys Res A. 1993; 330: 296-305https://doi.org/10.1016/0168-9002(93)91335-K
        • Rossi S.
        The national centre for oncological hadrontherapy (CNAO): status and perspectives.
        Phys Med. 2015; 31: 333-351https://doi.org/10.1016/j.ejmp.2015.03.001
        • Mirandola A.
        • Molinelli S.
        • Vilches Freixas G.
        • Mairani A.
        • Gallio E.
        • Panizza D.
        • et al.
        Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy.
        Med Phys. 2015; 42: 5287-5300
        • Giordanengo S.
        • Donetti M.
        • Garella M.A.
        • Marchetto F.
        • Alampi G.
        • Ansarinejad A.
        • et al.
        Design and characterization of the beam monitor detectors of the Italian National Center of Oncological Hadrontherapy (CNAO).
        Nucl Instrum Methods Phys Res A. 2013; 698: 202-207
        • Giordanengo S.
        • Garella M.A.
        • Marchetto F.
        • Bourhaleb F.
        • Ciocca M.
        • Mirandola A.
        • et al.
        The CNAO dose delivery system for modulated scanning ion beam radiotherapy.
        Med Phys. 2015; 42: 263-275
        • Zankowski C.
        • Podgorsak E.B.
        Determination of saturation charge and collection efficiency for ionization chambers in continuous beams.
        Med Phys. 1998; 25: 908-915https://doi.org/10.1118/1.598269
        • Le Roy M.
        • de Carlan L.
        • Delaunay F.
        • Donois M.
        • Fournier P.
        • Ostrowsky A.
        • et al.
        Assessment of small volume ionization chambers as reference dosimeters in high-energy photon beams.
        Phys Med Biol. 2011; 56: 5637-5650
        • Palmans H.
        • Thomas R. Duane S.
        • Sterpin E.
        • Vynckier S.
        Ion recombination for ionization chamber in a helical tomotherapy unit.
        MedPhys. 2010; 37: 2876-2889https://doi.org/10.1118/1.3427411