Highlights
- •Generative models can improve radiomics performance in different tasks when radiomics extracted from low dose CTs.
- •Simulation paired low-high dose CTs trained generative models can be used to denoise low dose CT without re-training.
- •Generative models can improve AUC by 0.05 of radiomics in survival predication and lung cancer diagnosis.
- •Denoising using generative models seems to be a necessary pre-processing step for radiomic features from low dose CTs.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
Introduction
Comes, Maria Colomba, Daniele La Forgia, Vittorio Didonna, Annarita Fanizzi, Francesco Giotta, Agnese Latorre, Eugenio Martinelli et al., Early prediction of breast cancer recurrence for patients treated with neoadjuvant chemotherapy: a transfer learning approach on DCE-MRIs. Cancers 13, no. 10 (2021): 2298. https://doi.org/10.3390/cancers13102298.
La Forgia, Daniele, Angela Vestito, Maurilia Lasciarrea, Maria Colomba Comes, Sergio Diotaiuti, Francesco Giotta, Agnese Latorre et al., Response predictivity to neoadjuvant therapies in breast cancer: A qualitative analysis of background parenchymal enhancement in DCE-MRI. J. Pers. Med 11, no. 4 (2021): 256. https://doi.org/10.3390/jpm11040256.
- Kelm Z.S.
- Blezek D.
- Bartholmai B.
- Erickson B.J.
- Sharma A.
- Chaurasia V.
Parmar, Chintan, Ralph TH Leijenaar, Patrick Grossmann, Emmanuel Rios Velazquez, Johan Bussink, Derek Rietveld, Michelle M. Rietbergen, Benjamin Haibe-Kains, Philippe Lambin, and Hugo JWL Aerts. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci. Rep. 5, no. 1 (2015): 1–10. https://doi.org/10.1038/srep11044.
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
Methods

Denoising models’ development
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
Data acquisition
- Armato S.G.
- McLennan G.
- Bidaut L.
- McNitt-Gray M.F.
- Meyer C.R.
- Reeves A.P.
- et al.
Extraction of radiomic features
Radiomics based models’ development
Experiments
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
Results

Survival prediction
- Chen J.
- Zhang C.
- Traverso A.
- Zhovannik I.
- Dekker A.
- Wee L.
- et al.
Training length | |||||
---|---|---|---|---|---|
Metrics | Without Denoising | 25 Epochs | 50 Epochs | 75 Epochs | 100 Epochs |
Encoder-decoder network | |||||
AUC | |||||
p-value | – | ||||
CGAN | |||||
AUC | – | ||||
p-value | – | ||||
Encoder-decoder network versus CGAN | |||||
p-value | – |

Lung cancer diagnosis
Training length | |||||
---|---|---|---|---|---|
Metrics | Without Denoising | 25 Epochs | 50 Epochs | 75 Epochs | 100 Epochs |
Encoder-decoder Network | |||||
AUC | |||||
p-value | – | ||||
CGAN | |||||
AUC | – | ||||
p-value | – | ||||
Differences of results by comparing Encoder-decoder network and CGAN | |||||
p-value | – |

Training length | |||||
---|---|---|---|---|---|
Metrics | 0 Epochs | 25 Epochs | 50 Epochs | 75 Epochs | 100 Epochs |
Encoder-decoder network | |||||
Accuracy | |||||
p-value | – | ||||
Recall | |||||
p-value | – | ||||
CGAN | |||||
Accuracy | – | ||||
p-value | – | ||||
Recall | – | ||||
p-value | – | ||||
Encoder-decoder network versus CGAN (p-values) | |||||
Accuracy | – | ||||
Recall | – |
Discussion
Conclusion
Declaration of Competing Interest
Acknowledgments
Appendix A. Supplementary data
- Supplementary data 1
References
- Artificial intelligence applications in medical imaging: a review of the medical physics research in Italy.Physica Med. 2021; 83: 221-241
- Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat Commun. 2014; 5
- Reliability of PET/CT shape and heterogeneity features in functional and morphologic components of non–small cell lung cancer tumors: a repeatability analysis in a prospective multicenter cohort.J Nucl Med. 2017; 58: 406-411https://doi.org/10.2967/jnumed.116.180919
- Stability of radiomic features in CT perfusion maps.Phys Med Biol. 2016; 61: 8736-8749
- Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18 F-FDG PET.J Nucl Med. 2012; 53: 693-700
- Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma.Clin Cancer Res. 2017; 23: 4259-4269
Placidi, Lorenzo, Eliana Gioscio, Cristina Garibaldi, Tiziana Rancati, Annarita Fanizzi, Davide Maestri, Raffaella Massafra et al., A multicentre evaluation of dosiomics features reproducibility, stability and sensitivity. Cancers 13, no. 15 (2021): 3835. https://doi.org/10.3390/cancers13153835.
- Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs.Sci Rep. 2021; 11
Comes, Maria Colomba, Daniele La Forgia, Vittorio Didonna, Annarita Fanizzi, Francesco Giotta, Agnese Latorre, Eugenio Martinelli et al., Early prediction of breast cancer recurrence for patients treated with neoadjuvant chemotherapy: a transfer learning approach on DCE-MRIs. Cancers 13, no. 10 (2021): 2298. https://doi.org/10.3390/cancers13102298.
La Forgia, Daniele, Angela Vestito, Maurilia Lasciarrea, Maria Colomba Comes, Sergio Diotaiuti, Francesco Giotta, Agnese Latorre et al., Response predictivity to neoadjuvant therapies in breast cancer: A qualitative analysis of background parenchymal enhancement in DCE-MRI. J. Pers. Med 11, no. 4 (2021): 256. https://doi.org/10.3390/jpm11040256.
Musolino, Stephen V., Joseph DeFranco, and Richard Schlueck. “The ALARA principle in the context of a radiological or nuclear emergency.” Health Phys. 94 (2) (2008): 109–111. https://doi.org/10.1097/01.HP.0000285801.87304.3f.
Bi, Wenya Linda, Ahmed Hosny, Matthew B. Schabath, Maryellen L. Giger, Nicolai J. Birkbak, Alireza Mehrtash, Tavis Allison et al., Artificial intelligence in cancer imaging: clinical challenges and applications. Ca-Cancer J. Clin 69, no. 2 (2019): 127–157. https://doi.org/10.3322/caac.21552.
- Radiomics improves cancer screening and early detection.Cancer Epidemiol Biomarkers Prev. 2020; 29: 2556-2567
- Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.Med Phys. 2018; 45: 1537-1549
- Prediction of coronary calcification and stenosis: role of radiomics from Low-Dose CT.Acad Radiol. 2021; 28: 972-979https://doi.org/10.1016/j.acra.2020.09.021
- Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.Radiother Oncol. 2017; 123: 363-369
- Long-term prognosis of patients with lung cancer detected on low-dose chest computed tomography screening.Lung Cancer. 2012; 75: 197-202https://doi.org/10.1016/j.lungcan.2011.07.002
- Response evaluation and survival prediction after PD-1 immunotherapy in patients with non–small cell lung cancer: comparison of assessment methods.J Nucl Med. 2021; 62: 926-933
- Repeatability and reproducibility of radiomic features: a systematic review.Int J Radiat Oncol*Biol*Phys. 2018; 102: 1143-1158
- On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers.Med Phys. 2017; 44: 1755-1770https://doi.org/10.1002/mp.12188
- Optimizing non-local means for denoising low dose CT.in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009: 662-665https://doi.org/10.1109/ISBI.2009.5193134
Chen, Minmin, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized denoising autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683 (2012).
- Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss.IEEE Trans Med Imag. 2018; 37: 1348-1357https://doi.org/10.1109/TMI.2018.2827462
- A review on magnetic resonance images denoising techniques.in: Machine Intelligence and Signal Analysis. Springer, Singapore2019: 707-715https://doi.org/10.1007/978-981-13-0923-6_60
Kollem, Sreedhar, Katta Rama Linga Reddy, and Duggirala Srinivasa Rao. “A review of image denoising and segmentation methods based on medical images.” Int. J. Mach. Learn. Comput. 9, (3) (2019): 288–295. https://doi.org/10.18178/ijmlc.2019.9.3.800.
- Deep learning.Nature. 2015; 521: 436-444
- 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network.IEEE Trans Med Imaging. 2018; 37: 1522-1534https://doi.org/10.1109/TMI.2018.2832217
Chen, Hu, Yi Zhang, Mannudeep K. Kalra, Feng Lin, Yang Chen, Peixi Liao, Jiliu Zhou, and Ge Wang. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36, no. 12 (2017): 2524-2535. https://doi.org/ 10.1109/TMI.2017.2715284.
- Deep convolutional framelet denosing for low-dose CT via wavelet residual network.IEEE Trans Med Imaging. 2018; 37: 1358-1369
- Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy.Eur J Nucl Med Mol Imaging. 2018; 45: 768-786https://doi.org/10.1007/s00259-017-3898-7
Parmar, Chintan, Ralph TH Leijenaar, Patrick Grossmann, Emmanuel Rios Velazquez, Johan Bussink, Derek Rietveld, Michelle M. Rietbergen, Benjamin Haibe-Kains, Philippe Lambin, and Hugo JWL Aerts. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci. Rep. 5, no. 1 (2015): 1–10. https://doi.org/10.1038/srep11044.
- Radiomic features analysis in computed tomography images of lung nodule classification.PLoS ONE. 2018; 13: e0192002
- Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set.npj Breast Cancer. 2016; 2
Chen, Junhua, Zeng, Haiyan, Zhang, Cong, et al. “Lung cancer diagnosis using deep attention based multiple instance learning and radiomics.” Med. Phys.. 2022; 00: 00- 00. https://doi.org/10.1002/mp.15539.
- A framework for multiple-instance learning.Adv Neural Inf Process Syst. 1997; 10
- Attention-based deep multiple instance learning.in: International conference on machine learning. 2018: 2127-2136
- Generative models improve radiomics reproducibility in low dose CTs: a simulation study.Phys Med Biol. 2021; 66165002https://doi.org/10.1088/1361-6560/ac16c0
- Image-to-image translation with conditional adversarial networks.in: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134
- Unpaired image-to-image translation using cycle-consistent adversarial networks.in: Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232
- The cancer imaging archive (TCIA): maintaining and operating a public information repository.J Digit Imaging. 2013; 26: 1045-1057
- Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 Low Dose CT Grand Challenge.Med Phys. 2017; 44: e339-e352
- A radiogenomic dataset of non-small cell lung cancer.Sci Data. 2018; 5
- The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT Scans: The LIDC/IDRI thoracic CT database of lung nodules.Med Phys. 2011; 38: 915-931
- Radiogenomics: what it is and why it is important.J Am Coll Radiol. 2015; 12: 862-866https://doi.org/10.1016/j.jacr.2015.04.019
- Computational radiomics system to decode the radiographic phenotype.Cancer Res. 2017; 77: e104-e107
- Robustness and regularization of support vector machines.J Mach Learn Res. 2009; 10
- Least squares support vector machine classifiers.Neural Process Lett. 1999; 9: 293-300
- On over-fitting in model selection and subsequent selection bias in performance evaluation.J Mach Learn Res. 2010; 11: 2079-2107
- Minority oversampling for imbalanced ordinal regression.Knowledge-Based Syst. 2019; 166: 140-155https://doi.org/10.1016/j.knosys.2018.12.021
- Deep double descent: where bigger models and more data hurt.J Stat Mech. 2021; 2021: 124003
- Double trouble in double descent: Bias and variance (s) in the lazy regime.in: International Conference on Machine Learning. 2020: 2280-2290
- Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge.in: International MICCAI Brainlesion Workshop. Springer, Cham2017: 287-297 (10.1007/978-3-319-75238-9_25)
- The multimodal brain tumor image segmentation benchmark (BRATS).IEEE Trans Med Imaging. 2015; 34: 1993-2024
- Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.Eur Radiol. 2020; 30: 3834-3842
- Radiomic MRI phenotyping of glioblastoma: improving survival prediction.Radiology. 2018; 289: 797-806
- On the limitations of the area under the ROC curve for NTCP modelling.Radiother Oncol. 2020; 144: 148-151https://doi.org/10.1016/j.radonc.2019.11.018
- Use and misuse of the receiver operating characteristic curve in risk prediction.Circulation. 2007; 115: 928-935https://doi.org/10.1161/CIRCULATIONAHA.106.672402
- Radiological tumour classification across imaging modality and histology.Nat Mach Intell. 2021; 3: 787-798
- Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas.Math Biosci Eng. 2021; 18: 8084-8095https://doi.org/10.3934/mbe.2021401
Yang, Heran, Jian Sun, Aaron Carass, Can Zhao, Junghoon Lee, Jerry L. Prince, and Zongben Xu. Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Trans. Med. Imaging 39, no. 12 (2020): 4249-4261. https://doi.org/ 10.1109/TMI.2020.3015379.
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy