Advertisement

Monte Carlo-based independent dose verification of radiosurgery HyperArc plans

Published:August 26, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.08.016

      Highlights

      • This study describes the first application of Monte Carlo software for pre‐treatment verification of HyperArc SRS plans.
      • The freely available Monte Carlo software called PRIMO is used.
      • PRIMO software was used in conjunction with the space phase files freely distributed by Varian for a TrueBeam linac.

      Abstract

      Purpose

      To investigate the feasibility of using the free PRIMO Monte Carlo software for independent dose check of cranial SRS plans designed with the Varian HyperArc (HA) technique.

      Materials and methods

      In this study, the PRIMO Monte Carlo software v. 0.3.64.1800 was used with the phase-space files (v. 2, Feb. 27, 2013) provided by Varian for 6 MV flattening-filter-free (FFF) photon beams from a Varian TrueBeam linear accelerator (linac), equipped with a Millennium 120 multileaf collimator (MLC). This configuration was validated by comparing the percentage depth doses (PDDs), lateral profiles and relative output factors (OFs) simulated in a water phantom against measurements for field sizes from 1 × 1 to 40 × 40 cm2. The agreement between simulated and experimental relative dose curves was evaluated using a global (G) gamma index analysis. In addition, the accuracy of PRIMO to model the MLC was investigated (dosimetric leaf gap, tongue and groove, leaf transmission and interleaf leakage).
      Thirty-five HA SRS plans computed in the Eclipse treatment planning system (TPS) were simulated in PRIMO. The Acuros XB algorithm v. 16.10 (dose to medium) was used in Eclipse. Sixty targets with diameters ranging from 6 to 33 mm were included. Agreement between the dose distributions given by Eclipse and PRIMO was evaluated in terms of 3D global gamma passing rates (GPRs) for the 2 %/2 mm criteria.

      Results

      Average GPR greater than 95 % with the 2 %(G)/1 mm criteria were obtained over the PDD and profiles of each field size. Differences between PRIMO calculated and measured OFs were within 0.5 % in all fields, except for the 1 × 1 cm2 with a discrepancy of 1.5 %. Regarding the MLC modeling in PRIMO, an agreement within 3 % was achieved between calculated and experimental doses. Excellent agreement between PRIMO and Eclipse was found for the 35 HA plans. The 3D global GPRs (2 %/2 mm) for the targets and external patient contour were 99.6 % ± 1.1 % and 99.8 % ± 0.5 %, respectively.

      Conclusions

      According to the results described in this study, the PRIMO Monte Carlo software, in conjunction with the 6X FFF Varian phase-space files, can be used as secondary dose calculation software to check stereotactic radiosurgery plans from Eclipse using the HyperArc technique.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Woo S.Y.
        • Grant W.H.
        • Bellezza D.
        • Grossman R.
        • Gildenberg P.
        • Carpenter L.S.
        • et al.
        A comparison of intensity modulated conformal therapy with a conventional external beam stereotactic radiosurgery system for the treatment of single and multiple intracranial lesions.
        Int J Radiat Oncol. 1996; 35: 593-597
        • Kramer B.A.
        • Wazer D.E.
        • Engler M.J.
        • Tsai J.-S.
        • Ling M.N.
        Dosimetric comparison of stereotactic radiosurgery to intensity modulated radiotherapy.
        Radiat Oncol Investig. 1998; 6: 18-25
        • Benedict S.H.
        • Cardinale R.M.
        • Wu Q.
        • Zwicker R.D.
        • Broaddus W.C.
        • Mohan R.
        Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation.
        Int J Radiat Oncol. 2001; 50: 751-758
        • Gevaert T.
        • Levivier M.
        • Lacornerie T.
        • Verellen D.
        • Engels B.
        • Reynaert N.
        • et al.
        Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas.
        Radiother Oncol. 2013; 106: 192-197
        • Clark B.
        • McKenzie M.
        • Robar J.
        • Vollans E.
        • Candish C.
        • Toyota B.
        • et al.
        Does Intensity Modulation Improve Healthy Tissue Sparing in Stereotactic Radiosurgery of Complex Arteriovenous Malformations?.
        Med Dosim. 2007; 32: 172-180
        • Calvo-Ortega JuanF
        • Delgado D.
        • Moragues S.
        • Pozo M.
        • Casals J.
        Dosimetric comparison of intensity modulated radiosurgery with dynamic conformal arc radiosurgery for small cranial lesions.
        J Cancer Res Ther. 2016; 12: 852
        • Otto K.
        Volumetric modulated arc therapy: IMRT in a single gantry arc.
        Med Phys. 2008; 35: 310-317
        • Thomas E.M.
        • Popple R.A.
        • Wu X.
        • Clark G.M.
        • Markert J.M.
        • Guthrie B.L.
        • et al.
        Comparison of Plan Quality and Delivery Time Between Volumetric Arc Therapy (RapidArc) and Gamma Knife Radiosurgery for Multiple Cranial Metastases.
        Neurosurgery. 2014; 75: 409-418
        • Audet C.
        • Poffenbarger B.A.
        • Chang P.
        • Jackson P.S.
        • Lundahl R.E.
        • Ryu S.I.
        • et al.
        Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs.
        Med Phys. 2011; 38: 5863-5872
        • Hartgerink D.
        • Swinnen A.
        • Roberge D.
        • Nichol A.
        • Zygmanski P.
        • Yin F.-F.
        • et al.
        LINAC based stereotactic radiosurgery for multiple brain metastases: guidance for clinical implementation.
        Acta Oncol (Madr). 2019; 58: 1275-1282
      1. Yamamoto M, Barfod BE, Urakawa Y. Gamma Knife Radiosurgery for Brain Metastases of Non-Lung Cancer Origin: Focusing on Multiple Brain Lesions. Japanese Exp. with Gamma Knife Radiosurgery, Basel: KARGER; 2008, p. 154–69.

        • Bhatnagar A.K.
        • Flickinger J.C.
        • Kondziolka D.
        • Lunsford L.D.
        Stereotactic radiosurgery for four or more intracranial metastases.
        Int J Radiat Oncol. 2006; 64: 898-903
        • Guckenberger M.
        • Roesch J.
        • Baier K.
        • Sweeney R.A.
        • Flentje M.
        Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery.
        Radiat Oncol. 2012; 7: 63
        • Nath S.K.
        • Lawson J.D.
        • Simpson D.R.
        • VanderSpek L.
        • Wang J.-Z.
        • Alksne J.F.
        • et al.
        Single-Isocenter Frameless Intensity-Modulated Stereotactic Radiosurgery for Simultaneous Treatment of Multiple Brain Metastases: Clinical Experience.
        Int J Radiat Oncol. 2010; 78: 91-97
        • Lawson J.D.
        • Wang J.-Z.
        • Nath S.K.
        • Rice R.
        • Pawlicki T.
        • Mundt A.J.
        • et al.
        Intracranial application of IMRT based radiosurgery to treat multiple or large irregular lesions and verification of infra-red frameless localization system.
        J Neurooncol. 2010; 97: 59-66
      2. Popple RA, Brown MH, Thomas EM, Willey CD, Cardan RA, Covington EL, et al. Transition From Manual to Automated Planning and Delivery of Volumetric Modulated Arc Therapy Stereotactic Radiosurgery: Clinical, Dosimetric, and Quality Assurance Results. Pract Radiat Oncol 2021;11:e163–71.

        • Zhu T.C.
        • Stathakis S.
        • Clark J.R.
        • Feng W.
        • Georg D.
        • Holmes S.M.
        • et al.
        Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT.
        Med Phys. 2021; 48
        • Rogers D.W.O.
        • Bielajew A.F.
        Monte Carlo Techniques of Electron and Photon Transport for Radiation Dosimetry.
        in: The Dosimetry of Ionizing Radiation. Elsevier, 1990: 427-539
        • Solberg T.D.
        • DeMarco J.J.
        • Holly F.E.
        • Smathers J.B.
        • DeSalles A.A.F.
        Monte Carlo treatment planning for stereotactic radiosurgery.
        Radiother Oncol. 1998; 49: 73-84
        • Ahnesjö A.
        • Aspradakis M.M.
        Dose calculations for external photon beams in radiotherapy.
        Phys Med Biol. 1999; 44: R99-R155
        • Das I.J.
        • Ding G.X.
        • Ahnesjö A.
        Small fields: Nonequilibrium radiation dosimetry.
        Med Phys. 2008; 35: 206-215
        • Andreo P.
        Monte Carlo simulations in radiotherapy dosimetry.
        Radiat Oncol. 2018; 13: 121
        • Cohilis M.
        • Hong L.
        • Janssens G.
        • Rossomme S.
        • Sterpin E.
        • Lee J.A.
        • et al.
        Development and validation of an automatic commissioning tool for the Monte Carlo dose engine in myQA iON.
        Phys Med. 2022; 95: 1-8
        • Leste J.
        • Younes T.
        • Chauvin M.
        • Franceries X.
        • Delbaere A.
        • Vieillevigne L.
        • et al.
        Technical note: GAMMORA, a free, open-source, and validated GATE-based model for Monte-Carlo simulations of the Varian TrueBeam.
        Phys Med. 2021; 89: 211-218
        • Alhamada H.
        • Simon S.
        • Gulyban A.
        • Gastelblum P.
        • Pauly N.
        • VanGestel D.
        • et al.
        Monte Carlo as quality control tool of stereotactic body radiation therapy treatment plans.
        Phys Med. 2021; 84: 205-213
      3. Kento Hoshida, Fujio Araki, Takeshi Ohno, et al. Monte Carlo dose verification for a single-isocenter VMAT plan in multiple brain metastases. Med Dosim. 2019 Winter;44(4):e51-e58.

        • Pokhrel D.
        • Mallory R.
        • Bush M.
        • et al.
        Feasibility Study of Stereotactic Radiosurgery Treatment of Glomus Jugulare Tumors via HyperArc VMAT.
        Med Dosim. 2022 Jun 15; S0958–3947: 00050-00054
        • Ruggieri R.
        • Naccarato S.
        • Mazzola R.
        • Ricchetti F.
        • Corradini S.
        • Fiorentino A.
        • et al.
        Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique.
        Radiat Oncol. 2018; 13
        • Yoshio K.
        • Wakita A.
        • Hisazumi K.
        • Kitayama T.
        • Tajiri N.
        • Shiode T.
        • et al.
        Feasibility of 5-mm vs 2.5-mm width multileaf collimator in noncoplanar volumetric modulated arc stereotactic radiotherapy for multiple brain metastases.
        Med Dosim. 2020; 45: 97-101
        • Clark G.M.
        • Popple R.A.
        • Young P.E.
        • Fiveash J.B.
        Feasibility of Single-Isocenter Volumetric Modulated Arc Radiosurgery for Treatment of Multiple Brain Metastases.
        Int J Radiat Oncol. 2010; 76: 296-302
        • Clark G.M.
        • Popple R.A.
        • Prendergast B.M.
        • Spencer S.A.
        • Thomas E.M.
        • Stewart J.G.
        • et al.
        Plan quality and treatment planning technique for single isocenter cranial radiosurgery with volumetric modulated arc therapy.
        Pract Radiat Oncol. 2012; 2: 306-313
        • LoSasso T.
        • Chui C.-S.
        • Ling C.C.
        Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy.
        Med Phys. 1998; 25: 1919-1927
        • Rodriguez M.
        • Sempau J.
        • Brualla L.
        PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacsPRIMO: Eine graphische Benutzeroberfläche für Monte-Carlo-Simulationen von Varian- und Elekta-Linearbeschleunigern.
        Strahlentherapie Und Onkol. 2013; 189: 881-886
        • Rodríguez Castillo M.L.
        Automation of the Monte Carlo simulation of medical linear accelerators.
        Universidad Politécnica de Cataluña. 2015;
        • Salvat F.
        • Fernández-Varea J.M.
        • Sempau J.
        PENELOPE 2011, a code system for Monte Carlo simulation of electron and photon transport.
        OECD/NEA Data Bank, Issy-Les-Moulineaux, France2011
        • Sempau J.
        • Wilderman S.J.
        • Bielajew A.F.
        DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations.
        Phys Med Biol. 2000; 45: 2263-2291
        • Rodriguez M.
        • Sempau J.
        • Bäumer C.
        • Timmermann B.
        • Brualla L.
        DPM as a radiation transport engine for PRIMO.
        Radiat Oncol. 2018; 13: 256
        • Stern R.L.
        • Heaton R.
        • Fraser M.W.
        • Murty Goddu S.
        • Kirby T.H.
        • Lam K.L.
        • et al.
        Verification of monitor unit calculations for non-IMRT clinical radiotherapy: Report of AAPM Task Group 114.
        Med Phys. 2011; 38: 504-530
      4. Méndez I, Polšak A, Hudej R, Casar B. The Multigaussian method: a new approach to mitigating spatial heterogeneities with multichannel radiochromic film dosimetry. Phys Med Biol 2018;63:175013.

        • Lee J.-W.
        • Choi K.-S.
        • Hong S.
        • Kim Y.-L.
        • Chung J.-B.
        • Lee D.-H.
        • et al.
        Effects of static dosimetric leaf gap on MLC-based small-beam dose distribution for intensity-modulated radiosurgery.
        J Appl Clin Med Phys. 2007; 8: 54-64
        • Yao W.
        • Farr J.B.
        Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields.
        J Appl Clin Med Phys. 2015; 16: 65-77
        • Cadman P.
        • McNutt T.
        • Bzdusek K.
        Validation of physics improvements for IMRT with a commercial treatment-planning system.
        J Appl Clin Med Phys. 2005; 6: 74-86
      5. LoSasso T. IMRT delivery system QA. In: Palta JR, TR M, editors. Intensity-modulated Radiat. Ther. state art, Colorado Springs (CO): Medical Physics Publishing; 2003, p. 561–91.

        • McCulloch J.
        • Pawlowski J.
        • Kirby N.
        • Rasmussen K.
        • Shi Z.
        • Myers P.
        • et al.
        Patient-specific dose quality assurance of single-isocenter multiple brain metastasis stereotactic radiosurgery using PTW Octavius 4D.
        J Appl Clin Med Phys. 2020; 21: 107-115
        • Decabooter E.
        • Swinnen A.CC.
        • Öllers M.C.
        • Göpfert F.
        • Verhaegen F.
        Operation and calibration of the novel PTW 1600SRS detector for the verification of single isocenter stereotactic radiosurgery treatments of multiple small brain metastases.
        Br J Radiol. 2021; 94: 20210473
        • Fogliata A.
        • De Rose F.
        • Stravato A.
        • Reggiori G.
        • Tomatis S.
        • Scorsetti M.
        • et al.
        Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences.
        Radiat Oncol. 2018; 13
        • Dieterich S.
        • Cavedon C.
        • Chuang C.F.
        • Cohen A.B.
        • Garrett J.A.
        • Lee C.L.
        • et al.
        Report of AAPM TG 135: Quality assurance for robotic radiosurgery.
        Med Phys. 2011; 38: 2914-2936
        • Miften M.
        • Olch A.
        • Mihailidis D.
        • Moran J.
        • Pawlicki T.
        • Molineu A.
        • et al.
        Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.
        Med Phys. 2018; 45: e53-e83
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet (London, England). 1986; 1: 307-310
      6. Belosi MF, Rodriguez M, Fogliata A, Cozzi L, Sempau J, Clivio A, et al. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys 2014;41:051707.

        • Rangel A.
        • Dunscombe P.
        Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC.
        Med Phys. 2009; 36: 3304-3309
        • Paganini L.
        • Reggiori G.
        • Stravato A.
        • Palumbo V.
        • Mancosu P.
        • Lobefalo F.
        • et al.
        MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO).
        Radiat Oncol. 2019; 14